• 제목/요약/키워드: spectrum property

검색결과 329건 처리시간 0.023초

LOCAL SPECTRAL THEORY AND QUASINILPOTENT OPERATORS

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.785-794
    • /
    • 2022
  • In this paper we show that if A ∈ L(X) and R ∈ L(X) is a quasinilpotent operator commuting with A then XA(F) = XA+R(F) for all subset F ⊆ ℂ and 𝜎loc(A) = 𝜎loc(A + R). Moreover, we show that A and A + R share many common local spectral properties such as SVEP, property (C), property (𝛿), property (𝛽) and decomposability. Finally, we show that quasisimility preserves local spectrum.

LOCAL SPECTRAL THEORY

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • 제38권3_4호
    • /
    • pp.261-269
    • /
    • 2020
  • For any Banach spaces X and Y, let L(X, Y) denote the set of all bounded linear operators from X to Y. Let A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA. In this paper, we prove that AC and BA share the local spectral properties such as a finite ascent, a finite descent, property (K), localizable spectrum and invariant subspace.

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

변수화 반도체 모델을 이용한 Cubic Zinc-blonde CdSe의 유전함수 분석 (Dielectric Function Analysis of Cubic CdSe Using Parametric Semiconductor Model)

  • 정용우;공태호;이선영;김영동
    • 한국진공학회지
    • /
    • 제16권1호
    • /
    • pp.40-45
    • /
    • 2007
  • 본 연구에서는 광전자 소자에 폭넓게 사용되는 ZnCdSe 화합물 반도체의 end-point인 CdSe의 유전함수 spectrum을 Vacuum Ultra Violet spectroscopic ellipsometry(타원편광분석법) 측정하여 분석하였다. 측정 결과는 변수화 모델을 이용하여 분석하였으며 그 결과 6 eV 이상에 존재하는 전자전이점들을 확인할 수 있었고 CdSe의 Critical Point(CP) 구조를 수치화 함으로써 온도나 화합물 함량에 따른 광특성 의존성 연구 등에 활용될 수 있는 database를 확보하였다.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구 (A study on the biorthogonally coded Q$^{2}$AM with constant envelope property)

  • 박인재;심수보
    • 한국통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF

방사선 디텍터의 Noise Power Spectrum : II. Spectrum의 평균을 통한 측정 (Noise Power Spectrum of Radiography Detectors: II. Measurement Based on the Spectrum Averaging)

  • 이은애;김동식
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.63-69
    • /
    • 2017
  • NNPS(normalized noise power spectrum)는 획득한 x선 영상에서 평판형 방사선 디텍터의 잡음 특성을 spectrum을 관찰하기 위해 측정한다. 그러나 NNPS 측정은 획득한 영상에 따라 일관적이지 못한 성질을 가지고 있어서 안정된 측정이 필요하다. 디텍터의 NNPS 측정은 표본 periodogram을 구하여 평균을 내는 방법을 사용하는데, 일반적으로 표본의 개수를 충분히 늘리면 정확하면서 안정된 값을 구할 수 있다. 본 논문에서는 periodogram과 같은 표본 spectrum의 평균으로 유한한 개수의 영상이 주어졌을 때 일관적이고 효율적인 NNPS 값을 제공 할 수 있는 두 가지 방법을 제안하고 그 성능을 비교하고 분석했다. 실제 두 종류의 방사선 디텍터로부터 획득한 x선 영상을 사용하여 제안한 방법을 실험하였으며, 주어진 영상을 사용하여 표본 spectrum의 최대 가지 수를 갖는 조합으로 NNPS를 구하고 평균을 내는 방법이 기존 방법에 비하여 안정된 NNPS 측정이 가능함을 보였다.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.