DOI QR코드

DOI QR Code

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang (Department of Liberal Arts and Science Chodang University)
  • Received : 2010.07.19
  • Accepted : 2011.02.15
  • Published : 2011.03.30

Abstract

A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

Keywords

References

  1. P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
  2. P. Aiena and M. T. Biondi, Ascent, descent, quasi-nilpotent part and analytic core of operators, 54 (2002), no. 3-4, 57-70.
  3. P. Aiena, M. L. Colasante and M. Gonzalez, Operators which have a closed quasinilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710. https://doi.org/10.1090/S0002-9939-02-06386-4
  4. E. Albrecht, On two questions of I. Colojoara and C. Foias, Manuscripta Math. 25 (1978), 1-15. https://doi.org/10.1007/BF01170354
  5. E. Albrecht, On decomposable operators, Integral Equations Operator Theory 2 (1979), 1-10. https://doi.org/10.1007/BF01729357
  6. E. Albrecht and J. Eschmeier, Analytic fuctional models and local spectral theory, Proc. London Math. Soc. (3) 75 (1997), 323-348. https://doi.org/10.1112/S0024611597000373
  7. E. Albrecht, J. Eschmeier and M. M. Neumann, Some topics in the theory of decomposable operators. In: Advances in invariant subspaces and other results of Operator Theory: Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
  8. S. Ansari and P. Enflo, Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc. 350 (1998), no. 2, 539-558. https://doi.org/10.1090/S0002-9947-98-01865-0
  9. W. B. Arveson, Ten Lectures on Operator Algebras, vol 55, CBMS Reg. Conf. Ser. Math., Amer. Math. Soc., Providence, RI, 1984.
  10. Y. A. Abramovitch and C. D. Aliprantis, Positive operators, in: Handbook of the Geometry of Banach spaces, vol. 1, North-Holland, 2001, 85-122.
  11. N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 2 (1954), 345-350.
  12. W. B. Arveson and J. Feldman, A note on invariant subspaces, vol. 15, Michiigan Math. J., (1968), 61-64. https://doi.org/10.1307/mmj/1028999905
  13. W. G. Bade, P. C. Curtis and K. B. Laursen, Divisible subspaces and problems of automatic continuity, Studia. Math. 68 (1980), 159-186. https://doi.org/10.4064/sm-68-2-159-186
  14. B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland Math. Library 42, 1988.
  15. C. Benhida and E. H. Zerouali, Local spectral theory of linear operators RS and SR, Integral Equations Operator Theory 54 (2006), 1-8. https://doi.org/10.1007/s00020-005-1375-3
  16. H. Bercovici, C. Foias and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Reg. Conf. Ser. Math., vol. 56, Amer. Math. Soc., Providence, RI, 1985.
  17. A. R. Bernstein and A. Ronbinson, Solution of an invariant subspace problem of K.T. Smith and P.R. Halmose, Pacific J. Math. 16 (1966), 421-431. https://doi.org/10.2140/pjm.1966.16.421
  18. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 375-397.
  19. S. W. Brown, Some invariant subspaces for subnormal operators, Integral Equations and Operator Theory 1 (1978), no. 3, 310-333. https://doi.org/10.1007/BF01682842
  20. S. W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. Math. 125 (1987), 93-103. https://doi.org/10.2307/1971289
  21. K. Clancey, Seminormal Operators, Lecture Notes in Math., vol. 742, Springer-Verlag, Berlin, 1979.
  22. I. Colojoarva and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  23. P. C. Curtis, Jr. and M. M. Neumann, Non-analytic functional calculi and spectral maximal spaces, Pacific J. Math. 137 (1989), 65-85. https://doi.org/10.2140/pjm.1989.137.65
  24. M. Didas, ${\varepsilon}(T^{n})$-subscalar n-tuples and the Cesaro operator on ${H^{p}}$, Annales Universitatis Saraviensis, Series Mathematicae 10 (2000), 285-335.
  25. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
  26. N. Dunford and J. T. Schwartz, Linear operators, Part III, Wiley-Interscience, New York, 1971.
  27. P. Enflo and V. Lomonosov, Some aspects of the invariant subspace problem, in: Handbook of the Geometry of Banach Spaces, vol. 1, 2001, 533-558.
  28. I. Erdelyi and R. Lange, Spectral decompositions on Banach spaces, Lecture Notes in Mathematics, No. 623, Springer-Verlag, 1977.
  29. J. Eschmeier, K. B. Laursen and M. M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Functional Analysis 138 (1996), 273-294. https://doi.org/10.1006/jfan.1996.0065
  30. J. Eschmeier and B. Prunaru, Invariant subspaces for operators with Bishop's property (${\beta}$) and thick spectrum, J. Functional Anal. 94 (1990), 196-222. https://doi.org/10.1016/0022-1236(90)90034-I
  31. J. Eschmeier and M. Putinar, Bishop's property (${\beta}$) and rich extensions of linear operators, Indiana Univ. Math. J. 37 (1988), 325-348. https://doi.org/10.1512/iumj.1988.37.37016
  32. S. Frunza, A characterization of regular Banach algebras, Rev. Roum. Math. Pures Appl. 18 (1973), 1057-1059.
  33. P. R. Halmos, Invariant subspaces of polynomially compact operators, Pacific J. Math. 16 (1966), 433-437. https://doi.org/10.2140/pjm.1966.16.433
  34. P. R. Halmos, Invariant subspaces, in: Abstract Spaces and Approximation, Proc. Conf., Oberwolfach, 1968, 1969, 26-30.
  35. N. D. Hooker , Lomonosov's hyperinvariant subspace theorem for real spaces, Math. Proc. Cambridge Philos. Soc. 89(1) (1981), 129-133. https://doi.org/10.1017/S0305004100058011
  36. B. E. Johnshon and A. M. Sinclair, Continuity of linear operators commuting with linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540. https://doi.org/10.1090/S0002-9947-1969-0251564-X
  37. Eungil Ko, k-quasihyponormal operators are subscalar, Integral Equations Operator Theory 28 (1997), 492-499. https://doi.org/10.1007/BF01309158
  38. R. Lange, On generalization of decomposability, Glasgow Math. J. 22 (1981), 77-81. https://doi.org/10.1017/S0017089500004493
  39. K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 326-336.
  40. K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986), 33-51.
  41. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
  42. V. I. Lomonosov, Inariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Prilonzhen. 7(3) (1973) 55-56 (in Russian); translated in Funct. Anal Appl. 7 (1973), no. 3, 213-214.
  43. C. E. Rickart, General thoery of Banach algebras, Von Nostrand, Princeton, NJ., 1960.
  44. M. Mbekhta, Sur la theorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
  45. T. L. Miller and V. G. Miller, An operator satisfying Dunford's condition (C) but without Bishop's property (${\beta}$), Glasgow Math. J. 40 (1998), 427-430. https://doi.org/10.1017/S0017089500032754
  46. T. L. Miller, V. G. Miller and M. M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2004), 1483-1493. https://doi.org/10.1090/S0002-9939-03-07217-4
  47. M. M. Neumann, Commutative Banach algebras and decomposable operators, Mh. Math. 113 (1992), 227 - 243. https://doi.org/10.1007/BF01641770
  48. C. Pearcy and N. Salinas, An invarinat-subspace theorem, Michigan Math. J. 20 (1973), 21-31. https://doi.org/10.1307/mmj/1029001007
  49. V. Ptak and P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23(98) (1973), 615-616. https://doi.org/10.1007/BF01593911
  50. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
  51. H. Radjavi and P. Rosenthal, Invariant subspaces, Ergeb. Math. Grenzgeb., vol. 77, Springer-Verlag, New York, 1973.
  52. C. J. Read, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2) 56 (1997), 595-606. https://doi.org/10.1112/S0024610797005486
  53. S. L. Sun, The single-valued extension property and spectral manifolds, Proc. Amer. Math. Soc. 118 (1993), no. 1, 77-87. https://doi.org/10.1090/S0002-9939-1993-1156474-0
  54. F.-H. Vasilescu, Analytic functional calculus and spectral decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982.
  55. P. Vrbova, Structure of maximal spectral spaces of generalized scalar operators, Czechoslovak Math. J. 23(98) (1973), 493-496.
  56. P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483-492.