DOI QR코드

DOI QR Code

PURE DISCRETE SPECTRUM ON TOEPLITZ ARRAYS

  • Lee, Jeong-Yup (Department of Mathematics Education, Catholic Kwondong University)
  • Received : 2017.11.19
  • Accepted : 2018.03.19
  • Published : 2018.05.31

Abstract

We look at Toeplitz arrays on ${\mathbb{Z}}^d$ and study a characterizing property for pure discrete spectrum in terms of the periodic structures of the Toeplitz arrays.

Keywords

References

  1. M. Baake, T. Jger & D. Lenz: Toeplitz ows and model sets. Bull. Lond. Math. Soc. 48 (2016), no. 4, 691-698. https://doi.org/10.1112/blms/bdw033
  2. M. Baake & D. Lenz: Dynamical systems on translation bounded measures : pure point dynamical and diffraction spectra. Ergod. Theory Dynam. Syst. 24 (2004), 1867-1893. https://doi.org/10.1017/S0143385704000318
  3. M. Baake, D. Lenz, Moody & V. Robert: Characterization of model sets by dynamical systems. Ergod. Theory Dynam. Syst. 27 (2007), no. 2, 341-382. https://doi.org/10.1017/S0143385706000800
  4. M. Baake, Moody & V. Robert: Weighted Dirac combs with pure point diffraction. J. reine angew. Math. 573 (2004), 61-94.
  5. Cortez & Maria: $\mathbb{Z}^d$ Toeplitz arrays. Discrete Contin. Dynm Syst. 15 (2006), no. 3, 859-881. https://doi.org/10.3934/dcds.2006.15.859
  6. M.I. Cortez, F. Durand, B. Host & A. Maass: Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. London Math. Soc. (2) 67 (2003), no. 3, 790-804. https://doi.org/10.1112/S0024610703004320
  7. T. Downarowicz & Y. Lacroix: A non-regular Toeplitz ow with preset pure point spectrum. Studia Math. 120 (1996), no. 3, 235-246.
  8. J.-B. Gouere: Diffraction and Palm measure of point processes. C. R. Acad. Sci. Paris 336(1) (2003), 57-62. https://doi.org/10.1016/S1631-073X(02)00029-8
  9. J.-Y. Lee: Substitution Delone sets with pure point spectrum are inter-model sets. J. Geom. Phys. 57 (2007), 2263-2285. https://doi.org/10.1016/j.geomphys.2007.07.003
  10. J.-Y. Lee & R.V. Moody: Lattice substitution systems and model sets. Discrete Comput. Geom. 25 (2001), 173-201. https://doi.org/10.1007/s004540010083
  11. J.-Y. Lee & R.V. Moody: Characterization of model multi-colour sets. Ann. Henri Poincare 7 (2006), 125-143. https://doi.org/10.1007/s00023-005-0244-6
  12. J.-Y. Lee, R.V. Moody & B. Solomyak: Pure point dynamical and diffraction spectra. Ann. Henri Poincare 3 (2002), 1003-1018. https://doi.org/10.1007/s00023-002-8646-1
  13. B. Solomyak: Dynamics of self-similar tilings. rgod. Theory Dynam. Syst. 17 (1997), 695-738. https://doi.org/10.1017/S0143385797084988
  14. B. Solomyak: Corrections to 'Dynamics of self-similar tilings', rgod. Theory Dynam. Syst. 19 (1999), 1685. https://doi.org/10.1017/S014338579917161X