References
- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- P. Aiena and V. Muller, The localized single-valued extension property and Riesz operators, Proc. Amer. Math. Soc. 143 (2015), no. 5, 2051-2055. https://doi.org/10.1090/S0002-9939-2014-12404-X
- P. Aiena and J. E. Sanabria, On left and right poles of the resolvent, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 669-687.
- A. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math. J. 48 (2006), no. 1, 179-185. https://doi.org/10.1017/S0017089505002971
- C. Apostol, L. A. Fialkow, D .A. Herrero, and D. Voiculescu, Approximation of Hilbert Space Operators, Vol. II, Research Notes in Mathematics 102, Pitman Advanced Publishing Program, 1984.
- M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Math. Sci. (Szeged) 69 (2003), no. 1-2, 359-376.
- B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), no. 2, 203-217.
- B. P. Duggal, Polaroid operators, SVEP and perturbed Browder, Weyl theorems, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 317-330. https://doi.org/10.1007/BF03032085
- B. P. Duggal, SVEP, Browder and Weyl Theorems, Topicas de Theoria de la Approximacion III. In:Jimenez Pozo, M. A., Bustamante Gonzalez, J., Djordjevic, S. V. (eds.) Textos Cientificos BUAP Puebla, pp. 107-146; Freely available at http://www.fcfm.buap.mx/CA/analysis-mat/pdf/LIBRO-TOP-T-APPROX.pdf
- B. P. Duggal, I. H. Jeon, and I. H. Kim, Upper triangular operator matrices, asymptotic intertwining and Browder, Weyl theorems, J. Inequal. Appl. 2013 (2013), 268, 12pp. https://doi.org/10.1186/1029-242X-2013-268
- S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), no. 2, 317-337. https://doi.org/10.2969/jmsj/03420317
- D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Research Notes in Mathematics 72, Pitman Advanced Publishing Program, 1982.
- D. A. Herrero, Economical compact perturbations, J. Operator Theory 19 (1988), no. 1, 25-42.
- D. A. Herrero, T. J. Taylor, and Z. Y. Wang, Variation of the point spectrum under compact perturbations, Topics in operator theory, 113-158, Oper. Theory Adv. Appl., 32, Birkhauser, Basel, 1988.
- H. G. Heuser, Functional Analysis, John Wiley & Sons, 1982.
- Y. Q. Ji, Quasitriangular + small compact = strongly irreducible, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4657-4673. https://doi.org/10.1090/S0002-9947-99-02307-7
- C. S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhauser, Boston, 2012.
- K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- C. G. Li and T. T. Zhou, Polaroid type operators and compact perturbations, Studia Math. 221 (2014), no. 2, 175-192. https://doi.org/10.4064/sm221-2-5
- V. Rakocevic, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131-137. https://doi.org/10.4064/sm-122-2-131-137
- A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, 1980.
- S. Zhu and C. G. Li, SVEP and compact perturbations, J. Math. Anal. Appl. 380 (2011), no. 1, 69-75. https://doi.org/10.1016/j.jmaa.2011.02.036