• Title/Summary/Keyword: space plane

Search Result 1,312, Processing Time 0.027 seconds

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Keshavarzi, Hamzeh;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2020
  • Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS

  • Cavicchioli, Alberto;Molnar, Emil;Telloni, Agnese I.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.425-444
    • /
    • 2013
  • We construct some hyperbolic hyperelliptic space forms whose fundamental groups are generated by only two or three isometries. Each occurring group is obtained from a supergroup, which is an extended Coxeter group generated by plane re ections and half-turns. Then we describe covering properties and determine the isometry groups of the constructed manifolds. Furthermore, we give an explicit construction of space form of the second smallest volume nonorientable hyperbolic 3-manifold with one cusp.

A Space-Tapering Approach for a Rectangular Array (직사각형 어레이를 위한 공간체감 방법)

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 1995
  • It is practical to taper the element (e.g., antenna or sensor) spacing with uniform weight rather than to taper the weights with uniform spacing. In a rectangular array, a triangular grid geometry of elements is more economical than a rectangular grid geometry in terms of reducing the number of elements. A space-tapering approach is proposed to improve the performance of a rectangular phased array with a triangular grid geometry of elements above a ground plane. The effects of space tapering on the main beam width and sidelobe level are discussed. It is shown that the proposed approach improves the sidelobe performance while the main beam width becomes a little broader.

  • PDF

The Seventeen Plane Groups (Two-dimensional Space Groups)

  • Kim Jin-Gyu;Kim Youn-Joong;Kim Young-Sang;Ko Jaejung;Kang Sang Ook;Han Won-Sik;Suh Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • Six basic symmetries and five Bravais lattices existing in the two-dimensional lattice are derived and then ten two-dimensional point groups are classified by each of five Bravais lattices. Finally seventeen two-dimensional space groups belonging to the ten point groups are studied.

Evaluation of a Large Space Indoor Air Flow Controling System with a CFD code for Enhancing indoor Environment

  • Chung Yong-Hyun;Onishi Junji;Soeda Haruo;Kim Dong-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • CFD code are used for numerically testing a new concept of large space air control system. A workshop with air-conditioners products lines and air-conditioned by several floor type air-containers is tested. The whole room air distribution is controlled by boosters installed in a middle height horizontal plane. First, calculated results are compared with measured data to confirm the validity and applicability of the prediction method. Next, the method is applied to case studies heating seasons. Results under some operating conditions show effectiveness in avoid the temperature stratification in winter.

Robot motion planning for time-varying obstacle avoidance using distance function (거리 함수를 이용한 로보트의 시변 장애물 회피 동작계획)

  • 전흥주;고낙용;남윤석;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1034-1039
    • /
    • 1991
  • A robot motion planning algorithm for time-varying obstacle avoidance is proposed. The robot motion planning problem is replaced with the optimization problem by using the distance function with the divided configuration space. To divide the configuration space, the polar coordinate system is used. For each divided configuration space, the admissible region where the robot can reach without collisions is obtained using the distance function. For an object moving in a plane, the admissible region is described by linear constraints on the polar coordinate system. A numerical algorithm that solves the optimization problem is shown and the computer simulation is carried out.

  • PDF

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

2D deformation in initially stressed thermoelastic half-space with voids

  • Abbas, Ibrahim A.;Kumar, Rajneesh
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1103-1117
    • /
    • 2016
  • The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.

A Study on developing Korean Style Apartment House through Analysis of Traditional Residences (전통주거공간 분석을 통한 한국형 아파트 개발에 관한 연구)

  • 안경은;민찬송
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 1999.04a
    • /
    • pp.126-132
    • /
    • 1999
  • The purpose of this study is to advance apartment houses in quality as a residence through revitalization of tradition and the procedures are as follows: The first procedure is theoretical contemplation. The second procedure is analysis of the traditional residential space that gives a starting point of introspection of it without cease at the stage of formal following or pattern application in revitalizing tradition in the apartment houses. And the third procedure is to select and suggest aspects applicable to developing Korean style apartment houses. The suggest is embodied by a plane figure of 55 pyong type apartment house after selecting the concrete development aspects with approaches such as arrangement and interior space analysis, behavior analysis and space division and design analysis. This study has its meaning in that it suggests a possibility of various approaches other than formal following or pattern application in revitalizing tradition in a new Korean type apartment house, that it gives another selection to diversifying consumers' patterns and that it helps recognize and develop our tradition in this age of cultural nationalism.

  • PDF