DOI QR코드

DOI QR Code

SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS

  • Cavicchioli, Alberto (Dipartimento di Matematica Universita di Modena e Reggio E.) ;
  • Molnar, Emil (Department of Geometry Institute of Mathematics Budapest University of Technology and Economics) ;
  • Telloni, Agnese I. (Dipartimento di Matematica Universita di Modena e Reggio E.)
  • Received : 2012.06.26
  • Published : 2013.03.01

Abstract

We construct some hyperbolic hyperelliptic space forms whose fundamental groups are generated by only two or three isometries. Each occurring group is obtained from a supergroup, which is an extended Coxeter group generated by plane re ections and half-turns. Then we describe covering properties and determine the isometry groups of the constructed manifolds. Furthermore, we give an explicit construction of space form of the second smallest volume nonorientable hyperbolic 3-manifold with one cusp.

Keywords

References

  1. C. Adams, The noncompact hyperbolic 3-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), no. 4, 601-606.
  2. I. Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3723-3732. https://doi.org/10.1090/S0002-9939-10-10364-5
  3. J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $\mathbb{S}3$, Trans. Amer. Math. Soc. 213 (1975), 315-352.
  4. P. J. Callahan, M. V. Hildebrand, and J. R. Weeks, A census of cusped hyperbolic 3-manifolds, Math. Comp. 68 (1999), no. 225, 321-332. https://doi.org/10.1090/S0025-5718-99-01036-4
  5. M. Cardenas, F. F. Lasheras, A. Quintero, and D. Repovs, One-relator groups and proper 3-realizability, Rev. Mat. Iberoam. 25 (2009), no. 2, 739-756.
  6. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th edition, Ergeb. der Math., Neue Folge Ed., 14, Springer Verlag, Berlin-New York, 1960.
  7. H. M. Farkas and I. Kra, Riemann Surfaces, Springer Verlag, Berlin, 1992.
  8. A. T. Fomenko and S. V. Matveev, Algorithmic and Computer Methods for Three- Manifolds, Math. and Its Appl. 425 Kluwer Acad. Publ., Dordrecht-Boston-London, 1997.
  9. H. Helling, A. C. Kim, and J. L. Mennicke, Some honey-combs in hyperbolic 3-space, Comm. Algebra 23 (1995), no. 14, 5169-5206. https://doi.org/10.1080/00927879508825526
  10. H. Helling, A. C. Kim, and J. L. Mennicke , A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), no. 1, 1-23.
  11. F. Lanner, On complexes with transitive groups of automorphisms, Lunds Univ. Math. Sem. 11 (1950), 1-71.
  12. V. S. Makarov, Geometric methods for constructing discrete isometry groups of Lobaschevskian space, Viniti, Itogi Nauki i Techniki, Problemy Geometrii 15 (1983), 3-59 (In Russian).
  13. B. Maskit, On Poincare's theorem for fundamental polygons, Advances in Math. 7 (1971), 219-230. https://doi.org/10.1016/S0001-8708(71)80003-8
  14. A. D. Mednykh, Three-dimensional hyperelliptic manifolds, Annals of Global Analysis and Geometry 8 (1990), 13-19. https://doi.org/10.1007/BF00055015
  15. A. Mednykh and M. Reni, Twofold unbranched coverings of genus two 3-manifolds are hyperelliptic, Israel J. Math. 123 (2001), 149-155. https://doi.org/10.1007/BF02784123
  16. E. Molnar, Space forms and fundamental polyhedra, Proceedings of the conference on differential geometry and its applications, Part 1 (Noe Mesto na Morave, 1983), 91-103, Charles Univ., Prague, 1984.
  17. E. Molnar, Minimal presentation of the 10 compact Euclidean space forms by fundamental domains, Studia Sci. Math. Hungar. 22 (1987), no. 1-4, 19-51.
  18. E. Molnar , Two hyperbolic football manifolds, Differential geometry and its applications (Dubrovnik, 1988), 217-241, Univ. Novi Sad, Novi Sad, 1989.
  19. E. Molnar, Polyhedron complexes with simply transitive group actions and their realizations, Acta Math. Hungar. 59 (1992), no. 1-2, 175-216. https://doi.org/10.1007/BF00052103
  20. M. Reni, The isometry groups of genus 2 hyperbolic 3-manifolds, Kobe J. Math. 15 (1998), no. 1, 77-84.
  21. M. Takahashi, An alternative proof of Birman- Hilden- Viro's theorem, Tsukuba J. Math. 2 (1978), 27-34. https://doi.org/10.21099/tkbjm/1496158503
  22. W. P. Thurston, Three-Dimensional Geometry and Topology, (S. Levy ed.), Princeton Univ. Press, Princeton, N.J., 1997.
  23. A. Yu. Vesnin and A. D. Mednykh, Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions, Siberian Math. Journal 40 (1999), no. 5, 873-886. https://doi.org/10.1007/BF02674717
  24. E. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, 139-248, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993. https://doi.org/10.1007/978-3-662-02901-5_2
  25. J. Weeks, SnapPea: A computer program for creating and studying hyperbolic 3- manifolds, www.geometrygames.org.
  26. J. A.Wolf, Spaces of Constant Curvature, Univ. of California, Berkeley, California, 1972; Russian translation: Izd. "Nauka", Moskow, 1982.