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Abstract

Recently, satellite formation flying has been a topic of significant research interest in
aerospace society because it provides potential benefits compared to a large spacecraft.
Some techniques have been proposed to design optimal formation trajectories mini-
mizing fuel consumption in the process of formation configuration or reconfiguration.
In this study, a method is introduced to build fuel-optimal trajectories minimizing a
cost function that combines the total fuel consumption of all satellites and assignment
of fuel consumption rate for each satellite. This approach is based on collocation and
nonlinear programming to solve constraints for collision avoidance and the final con-
figuration. New constraints of nonlinear equality or inequality are derived for final
configuration, and nonlinear inequality constraints are established for collision avoid-
ance. The final configuration constraints are that three or more satellites should form
a projected circular orbit and make an equilateral polygon in the horizontal plane. Ex-
ample scenarios, including these constraints and the cost function, are simulated by
the method to generate optimal trajectories for the formation configuration and recon-
figuration of multiple satellites.

Keywords: satellite formation flying, nonlinear programming, collocation, collision avoidance

1. Introduction

The primary goal of satellite formation flying (SFF) is to place multiple satellites into nearby
orbits forming a satellite cluster to achieve a common mission. In the recent days, it has become a
topic of significant focus in the aerospace engineering area. Formation flying system gives rise to
several benefits compared to a large single spacecraft system for the same missions; 1) low cost for
launch and mass production, 2) larger payload aperture size, 3) greater launch flexibility, 4) higher
system reliability and 5) easier expandability. According to the characteristics of control purpose and
design, the SFF problem can be categorized into three phases: 1) determination of initial conditions,
2) satellite formation-keeping, and 3) satellite formation configuration or reconfiguration. However
the problem of determination of initial conditions may belong to the satellite formation-keeping
problem because both problems are concerned with minimization of fuel consumption for the pur-
pose of maintaining the formation against external disturbance sources such as the J, gravitational
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perturbation and air-drag effects. This study primarily addresses fuel optimal trajectory planning of
satellites from the perspective of formation configuration or reconfiguration management.

When a satellite formation is deployed or needs to be modified, it is important to determine op-
timal maneuvers for fuel minimization due to limited lifetime of the satellite. Some techniques have
been studied to construct optimal formation trajectories minimizing the fuel consumption. Convex
optimization techniques were applied to derive fuel/time optimal control algorithm of formation-
keeping and formation reconfiguration, which were consecutively extended into the time-varying
linear dynamics of eccentric orbits (Tillerson & How 2001, Tillerson et al. 2002). The reconfigura-
tion problem for fuel optimal maneuvers was modeled and analyzed as a multi-agent optimization
problem in Yang et al. (2002). The mixed-integer linear programming (MILP) was applied to de-
sign fuel-optimal trajectories considering collision avoidance and plume impingement avoidance
constraints in Richards et al. (2002). An open-loop control algorithm was derived to reorient a for-
mation in the free space by minimizing a cost function with components of fuel consumption and
fuel equalization (Beard et al. 2000).

The spatial separation between satellites could range from a few meters to several kilometers
for some SFF missions. Thus it is important to avoid collisions between satellites as they move in
the space under the configuration or reconfiguration mission. There have been previous attempts to
solve the problem of trajectory optimization with the collision avoidance in collaborative systems.
Especially, the collision avoidance problem has been extensively investigated in the field of robot
motion planning. Some methods based on potential functions were developed for spacecraft appli-
cations to handle collision avoidance strategies (McInnes 1995, Johnston & McInnes 1997). Other
approaches were also proposed for spacecraft path-planning with collision avoidance constraints by
splines (Singh & Hadaegh 2001) and MILP (Richards et al. 2002) methods. For the configuration
strategy, there are literatures dealing with final configurations. Some approaches evaluate the cost for
many predefined sets to assign the final states, and then select a set that yields the lowest cost. The
problem of trajectory planning and configuration selection is decoupled in those approaches (Wang
& Hadaegh 1998, Tillerson et al. 2002). The MILP technique includes configuration selection in
the trajectory optimization problem. Thus the selection and assignment are performed within the
MILP to achieve the subset of final states that leads to the lowest cost and are recognized as a global
configuration (Richards et al. 2002).

This paper is concerned with optimal trajectory planning of multiple satellites. For the optimal
trajectory planning, an optimal control problem is converted into a parameter optimization problem
(Hull 1997) that can be solved by a nonlinear programming (NLP). The NLP handles constraints
of collision avoidance, final configuration and defect equations which are generated by collocation
methods (Russell & Shampine 1972, Dickmanns & Well 1974, Hargraves & Paris 1987). In contrast
to the aforementioned configuration strategies, new constraints of nonlinear equality or inequality
are derived for the final configuration and applied to the NLP problem in this paper. The final
configuration constraints are that three or more satellites should be placed in an equilateral polygon
of the projected circular orbit (PCO) which was considered in the TechSat-21 mission (Martin &
Stallard 1999).

2. Problem Formulation

This section presents dynamic equations describing the SFF and details of the NLP formulation
to solve the trajectory optimization problems. Principal idea of the collocation approach is also
elaborated.
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Figure 1. LVLH coordinate system for the relative motion.

2.1 Relative Formation Dynamics

A rotating local-vertical-local-horizontal (LVLH) frame is used to describe the relative dynamic
motion with respect to the reference satellite. The z-axis points in the radial direction, the z-axis
is perpendicular to the orbital plane and points in the direction of the angular momentum vector.
Finally, the y-axis points the along-track direction as shown in Figure 1.

In general, the Clohessy-Wiltshire equation (Clohessy & Wiltshire 1960) based on the LVLH
frame is utilized to describe the relative motion and control strategies between neighboring satellites.
It is usually called as Hill’s equation and expressed as:

% — 2wy — 3T = u,
§+ 2wE = uy (D

é+wzz:uz

where z,y and z are the relative position of the satellite about the reference satellite in the LVLH
frame and w represents the mean motion of the reference satellite. The Hill’s equation is a set of
linearized equations governing the relative motion between satellites. It has been used for the study
of relative motion of rendezvous mechanics in the past. In recent years, the Hill’s equation plays the
role of baseline for various applications of satellite formation flying design. In this study, the Hill’s
equation derives the defect equation for collocation and the constraints of the final configuration.
For the convenience of the NLP, we introduce a new time variable (7 = wt) using the mean motion
(w) of the reference orbit. From the relationship, dz/dt = w(dz/dr) and d2z/dt* = w?*(d?z/dT?),
the Hill’s equation in state space form for the relative dynamics in terms of the new time variable
(7) can be rewritten as

% = Ax+ Bu 2
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where
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where (") and (*) denote derivatives with respect to (w.r.t.) the new time variable (7). The state
vector and control input will be represented as variables w.r.t. the new time variable in the subsequent
derivations, i.e. u(t) = w?u(r). Let us note that the out-of-plane motion is decoupled from the in-
plane motion as it is shown in Eq. (1).

2.2 Nonlinear Programming

Trajectory optimization problems basically seek to compute the control history and optimal
trajectories for an objective function such as fuel and time minimization. It can be formulated into
NLP by using parameter optimization techniques. There are four general classes of methods for
converting a trajectory optimization problem into a NLP problem according to the unknowns: 1)
control parameters, 2) control parameters and some state parameters, 3) control parameters and state
parameters, and 4) state parameters (Hull 1997). The NLP problem in this paper is to find states and
control inputs at nodes that minimize the cost function. Hence, this problem can be categorized into
the third class, because state and control inputs are the unknowns in our problem. To formulate the
NLP, nodes for discretization are defined as

o<t <..<lL<..<itn=tf, Vie [0,1,2,...,N] 3)

where the index, 7 denotes the ith node and N + 1 is the total number of nodes. The time interval
(At = t;41 — t;) between the nodes is spaced equally and ¢ ; is a fixed final time. The variables for
the NLP problem are the collected state vectors and control vectors of all satellites at the nodes. If
the number of satellites is equal to .S in the trajectory planning problem, state vector z for the NLP
is given by

X X11, X12, - X1N--Xp1, Xp2, ... XpN.-.X51, Xg2,--.Xsn]T

z= U — [ 11, 412, 1N pl; Ap2, pN S1, A82; SN] T , vp c [1,2’3,.“,5]
[lllo, i1, ..U N...Upo, Up1,...UpN...USQ, llsl,...llSN]

“)

where the index p represents the pth satellite and x is the state vector, X p; = [Ty Ypi 2pi Zpi Upi Zpi]T
and u represents the control input vector such that up; = [Upiz Upiy upiz]T. The variables z,y, 2
will be explained later when describing relative dynamics. The subscripts in x and u denote the
pth satellite and the ith node, respectively. The number of state vector is smaller than that of the
control input vectors because the initial state vectors for all satellites are fixed a priori. The state
and control input vectors are confined within specified limits as boundary conditions as follows;

—Xmaz < Xpi < Xmaz

—Wmaz < Up; < Upag &)

Let M be the mass of a satellite and 7 the fuel mass consumption rate. In this study, it is
assumed that the mass is same for all satellites and constant during the formation maneuvers and a
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variable specific impulse propulsion system is employed. Linear interpolation is used to assess the

control between two nodes because the collocation method uses linear interpolation to obtain control

vectors at the center of nodes. It follows such that

t—1;
At

Thus the fuel consumption, F,, of the pth satellite, can be expressed as

u(t) = u; +

(i1 —ug) for t; <t <t (6)

tf
F, = mdr——/ Usy + uby + Ul )dt
to

Z > { Upik i up(i+1)k = tpik)” + Upik (Up(it 1)k — Upik)} At (7)

i=0 k=z,y,z

where P is the power delivered to the propulsion system. The upper equation of Eq. (7) is motivated
by Yang et al. (2002) and the lower one can be derived using Eq. (6) for control inputs. The cost
function is defined as a combination of the total fuel consumption of all satellites and assignment of
fuel consumption rate for each satellite. In Eq. (7), the first term (M2 /2P) be can omitted because it
is constant and same for all satellites. Thus it follows as

J_wazz Aoty — ®)

p=1q=p+1

where

= Z Z { Upik + up(i-‘r-l)k — upir)” + um‘k(%(iﬂ)k - upik)} At

i=0 k=g,y,z
which subjects to equality constraints such as the defect equations of the collocation

C(z) =0 €))
and the inequality constraints such as the boundary conditions (Eq. (5))

D(z) >0 (10)

The first term in Eq. (8) represents the total fuel consumption for the formation while the second
term is introduced to assign the distribution of fuel consumption to each satellite using the index Ap.
Also, ¢ in the second term denotes the weighting factor for the assignment of fuel consumption. For
instance, let us consider the case of trajectory planning using three satellites. If fuel consumptions
of the 2°¢ and the 37 satellite are required to be 80 % and 120 % on the 1°¢ satellite, then Aj, Az,
and A3 will have 1.0, 0.8 and 1.2 with appropriate values of . This cost function thus comprises
boundary conditions, path constraints, terminal constraints and defect equations. The collocation
method is used in place of direct numerical integration for parameter optimization formulation in
this work.

2.3 Direct Transcription Method
There are two approaches for solving trajectory optimization problems; direct and indirect meth-
ods. Indirect methods attempt to find solutions satisfying the necessary conditions in optimal control
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theory such as the Euler-Lagrange equations or the Pontryagin’s maximum principle. They can be
solved by numerical methods in general cases. Direct methods, on the other hand, recussively up-
date the control and trajectory to reduce the cost function while satisfying the boundary conditions
and the terminal constraints. However, it is rather difficult to categorize every technique into direct
or indirect method. Betts (1998) provides more details of the aforementioned direct and indirect
methods. In direct methods, control or state variables can be represented by polynomials and the
discretized control or state variables at discrete points (nodes) are considered as parameters for opti-
mization. A variety of direct methods have been proposed and can be categorized roughly according
to the methods of handling the discretizations of the dynamic equation. The most common approach
is the finite parameter representation of the control history with explicit integration.-of the dynamic
equations. Another approach is to formulate the control and state variables by polynomials, retain-
ing the constraints so that the integration formula can be satisfied at each node. This approach is
referred to as the direct transcription or collocation. A new collocation method was introduced by
Hargraves & Paris (1987) using piecewise Hermite cubic polynomials to solve several atmospheric
trajectory optimization problems. It was also applied to the optimization of finite-thrust spacecraft
trajectories control problem (Enright & Conway 1991). The same collocation method is adopted
in this study to construct optimal trajectories of SFF because it is robust about initial guesses thus
producing optimal trajectory even under poor initial guess.

The interpolated state vector at the center between any two nodes (7; and 7;4+1) using the Hermite
interpolation and the Hill’s equation in Eq. (2) is expressed as

Xic = (1/2)(x; + Xi41) + (AT/8)[A(x; — xi11) + B(w; + uipa)] 11

and the control vector at the same center by a linear interpolation is given by

e = (1/2)(u; + wiyq) (12)
The derivative of the state vector also at the same location is described as
Xic = —[3/(2AT)](X; — Xip1) — (1/4)[A(xi — Xiy1) + Bu; + uiy1)] 13)

Moreover, the defect vector at the center of nodes is introduced as
A; = (Axe + Buye) — X;c (14)

If the state and control vectors at each node is estimated such that the defect vector (A) becomes
nearly equal to zero, those state and control vectors for all nodes will be an approximate solution
of the Hill’s equation. Thus the defect vector will be regarded as equality constraints for the NLP
problem instead of direct numerical integration of the Hill’s equation.

3. Constraints of Formation Trajectories

Two constraints can be considered here; collision avoidance and final formation configuration.
The final formation configuration has the equality constraints for three and four satellites, and the
inequality constraints for three or more satellites.

3.1 Collision Avoidance
Collision avoidance is a critical requirement for the configuration or reconfiguration maneuver
of the SFF system which involves multiple satellites. Constraints of the collision avoidance among
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(a) Equilateral triangle (b) Equilateral square (c) Equilateral pentagon

Figure 2. Configuration of satellites in the projected circular orbit (a: phase angle measured from y axis, p:
radius of a circle).

different satellites are addressed in this section. They can be derived easily from a geometry based
on the LVLH frame. A satellite should be placed at least outside a 3-dimensional sphere whose
center is the position of other satellites at each node. Let the position vectors at the ith node be given
by [Zpi Ypi 2pi) " and [Zgi Ygi 24i]" for pth and gth satellites, respectively. Then the constraint for
collision avoidance between two satellites can be stated as

(xpi - xqi)2 + (ypi - yqi)2 + (Zpi - Zqi)2 > RZ: Vp,Vq € [1’ 2. S]; p<q (15)

where R, is the safety radius of the 3-dimensional sphere for collision avoidance. This equation
should be satisfied at all nodes for collision avoidance. Hence, this equation is augmented to the
NLP problem as an inequality constraint.

3.2 Final Configuration

There are some literatures (Wang & Hadaegh 1998, Tillerson et al. 2002, Richards et al. 2002)
dealing with the final configuration, namely final states of the relative dynamics. However, most of
them presume the final states of satellites as fixed or compute the cost of many sets including the
final states. Then they select one set for the lowest cost among the candidate sets. So this selection
of final states is decoupled from optimization problem in these approaches. Richards et al. (2002)
defined many subsets of the final states and performed assessment of all subsets within the trajectory
optimization. Then they selected only one subset with the lowest overall fuel cost as it is known
as a global configuration. However, the proposed approach appends the constraints of the final
configuration to the NLP problem instead of using the final state set to find the optimal trajectories.

In this section, the final configuration constraints are derived in a general form for the PCO
(Alfriend et al. 2000, Sabol et al. 2001). Three or more satellites need to be placed in an equilateral
polygon of the horizontal (y — z) plane as shown in Figure 2. Such orbits can be applied to the Earth
observation mission due to the characteristics of the constant projected distance onto the horizontal
plane between satellites. The PCO is inclined at £:26.56° to the horizontal plane. Equality con-
straints are introduced for three and four satellites whereas equality/inequality constraints for three
and more satellites for the purpose of the final configriration.
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3.2.1 Equality constraints

Equality constraints are established for three and four satellites because it is rather difficult to
derive general equality constraints of the final configuration for more than four satellites. Final posi-
tion and velocity of satellites have to be chosen to constitute an equilateral polygon in the horizontal
plane and to maintain the initial formation. First, all the satellites have to be positioned in a circle in
the horizontal plane to generate a PCO. Eq. (16) can be derived from the simple geometry that the
distance of the pth satellite from the origin is equal to p in the horizontal plane. Second, they should
build up an equilateral polygon in the horizontal plane. This constraint is expressed in Eg. (17)
which can be derived from the principle of center of mass.

ya(rs) + 25(rp) = p° (16)
5 5

Zyp(Tf) =0 and Zzp(rf) =0 17

p=1 p=1

However, one constraint needs to be added to construct an equilateral square in the case of four
satellites formation because the number of constraints in Egs. (16) and (17) is smaller than unknown
parameters. For example, four satellites placed in a rectangle configuration inside a circle can satisfy
the constraints of Eq. (16) and (17). To avoid this rectangle configuration, an additional constraint
can be derived from the fact that the area of any triangle made of three out of four satellites located
in an equilateral square is equal to the half area of an equilateral square (See Figure 2b). In other
words,
Vr(r—a)(r =) (r —c) = p* (18)

where each parameter is defined as

r=(1/2){(a+b+c)

a=1/(W1(77) = 92(7))? + (21(75) — 22(74))?

b=/(01(7) —ys(7e))* + (21(75) — 23(7¢))?

¢ =/ (v2(7s) — ws(77))? + (22(7) — 23(7%))?

Equation (18) implies the area of a triangle made of any three satellites. It can be derived from
the Heron’s formula that the area of a triangle can be obtained using lengths of three sides (a, b, and
¢) of the triangle. Even though four satellites are placed in a rectangle inside the circle, if the area of
any triangle by three satellites among them is equal to p?, then four satellites form a square without
any exception. Thus Eq. (18) poses an additional constraint for four satellites located in a rectangle
form.

Even though all the satellites are placed in an equilateral polygon in the horizontal plane, ad-
ditional constraints are necessary for the z components and velocities of satellites to maintain the
equilateral polygon as time elapses. These constraints can be derived from periodic solutions (Al-
friend et al. 2000) of the Hill’s equation. Periodic solutions of the Hill’s equation can be derived by
requiring the periods of a reference or mother satellite and daughter satellites to be equal. Corre-
sponding periodic solutions for the PCO are given by

z = (p/2)sin(r + @), &= (p/2)cos(T+ a)
y = pcos(T + ), | gy = —psin(T + @) (19)
z = tpsin(r + a), z = xpcos(tT + @)
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Table 1. Number of unknown parameters and constraints.

Category 3 satellites 4 satellites 5 satellites
Uuknown parameters 441 588 735
Boundary conditions 441 588 735
Defects 288 384 480
Constraints of collision avoidance 48 96 160
Constraints of final configuration* 17(18) 23(26) 35)

*represents the equality constraints, but values in the parentheses are the number
for the case that Eqgs. (17) and (18) are exchanged with Eq. (22)

where a represents phase angle as shown in Figure 2. The + sign in Egs. (19) is for the PCO inclined
at 26.56° while — sign is for one inclined at —26.56°. If y and z components of all the satellites are
obtained using Egs. (16), (17) and (18), constraints for velocity and = components of all the satellites
can be derived as Eqs. (20) and Eq. (21) by using Eq. (19).

?]p(Tf) + Zp(Tf) =0
2p(75) F yp(17) = 0 (20)
2, (17) F 2p(77) = 0

2xp(1s) + Yp(rp) =0 21

Equations (16), (17), (18), (20) and (21) are added to the NLP problem as constraints for the final
configuration of the PCO. The upper and lower signs imply again the PCOs are inclined at 26.56 °
and —26.56°, respectively in Eq. (20).

3.2.2 Inequality constraints

Equality constraints for the final configuration were derived for three and four satellites in the
previous section. Egs. (17) and (18) can be replaced with inequality constraints which can be used
for three, four and more satellites involved in the formation. Those inequality constraints are derived
from the very simple principle that the length between two satellites should be larger than or equal
to the side length of an equilateral polygon in the horizontal plane. Thus inequality constraint in
Eq. (22) can be added to the NLP problem with Eqgs. (16), (20) and (21) for the final configuration
instead of Egs. (17) and (18).

Dpy > py/2 — 2cos(27/S), Vp,Vge([1,2,..,5;;p<q (22)

where the parameter D, represents the distance between two satellites in the horizontal plane de-
fined as

Dpg = \/Wp(75) = Ua(71))? + (2p(77) — 2a(7))? 23)

The right hand side term of Eq. (22) defines the length of the base for an isosceles triangle made
of two adjacent satellites on the equilateral polygon inside the circle and the origin. Thus if the
radius of the circle and the equilateral polygon inside the circle are given, the length of two adjacent
satellites can be easily computed from the right term of Eq. (22). When the inequality constraint of
Eq. (22) is satisfied for all the satellites on the circle in the horizontal plane, the formation is ensured
to make an equilateral polygon.
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Table 2. Results of some examples for case I (unit: 10°m? /sec®).

Fuel u=10.0 u=12Xxp" u=2.0,xp% u=2.0,2p°
Satellite 1 1.354 2.564 2.859 2.454
Satellite 2 2.872 2.821 2.859 2.945
Satellite 3 1.159 2.564 2.859 2454

Total 5.385 7.949 8.577 7.853

(X1, A2, A3) = (1.0, 1.0, 1.0), Z(M1, Az, As) = (1.0, 1.0, 1.0), 3(A1, Az, Aa) = (1.0, 1.2, 1.0)

4. Numerical Simulation and Results

In this section, an optimal formation trajectory planning is examined using the NLP and col-
location method with constraints of collision avoidance and final configuration. Both equality and
inequality constraints were derived in the previous section to describe the SFF mission goal. As
mentioned in the previous section, Egs. (17) and (18) are applicable only for three or four satellites.
They can be exchanged with Eq. (22) for three, four and more satellites. To solve the NLP problem
numerically in this study, the CFSQP (Lawrence 1997) package is used, in which the sequential
quadratic programming (SQP) algorithm is implemented. The CFSQP especially generates feasible
iterations throughout the optimization process.

Numerical simulation is performed for 3, 4 and 5 satellites by using 17 discrete nodes. The final
time is fixed as 7 and the PCO inclined at 26.56° to the horizontal plane is considered for the final
configuration. Three cases are considered in this simulation; one configuration and two reconfigu-
rations. Mean motion (w) is determined from reference orbit at 550 km high altitude. The radius
of sphere (R, ) is set to be 50 m for collision avoidance and the radius of a circle in the horizontal
plane (p) is 1 km for the final configuration. The boundary conditions are [—0.003/w ?,0.003 [w?]
for the control inputs in Eq. (3). The boundaries of state vector are not significant, but it is necessary
to bound the NLP results and obtain a unique solution, so they can be set up with reasonabie values.
Table 1 shows the number of unknown parameters and constraints according to the number of satel-
lites. The NLP problems were solved on a 2.6 GHz personal computer with 512MB of RAM. In
general, the processing time increases as the number of nodes increases. It took from a few minutes
to a few hours to obtain optimal trajectories on the personal computer.

4.1 Case I: Reconfiguration for 3 Satellites

In this case, we assume that two satellites form a PCO with 400 m radius and their phase angles
are 45 and 225 degrees, respectively in the horizontal plane. It is also assumed that a satellite is
initially located at the origin of the LVLH frame. Now, the main purpose is to generate optimal
trajectories such that the cost function is minimized according to the given values of 4 and . The
final formation should be the PCO in the form of an equilateral triangle in the horizontal plane with
the radius of 1 km. Four results are listed in Table 2 for different values of 1 and A. Even though
a new time variable is used in the NLP problem, the resultant fuel cost is changed to the unit of
[m?/sec?]. Optimal trajectories with the lowest total fuel cost were obtained with p equal to 0.0
because the rate of fuel consumption is not assigned for reconfiguration. Total fuel cost increases as
u becomes greater with the fuel cost rate assigned for all satellites. However, the desired trajectories
cannot be obtained under the assignment of fuel rate if p is too small. One can notice two examples
in the 3'¢ and the 4*" columns of Table 2. The total cost for 4 = 1.2 is lower than for p = 2.0
but the fuel cost of each satellite does not coincide with A, assigned. Figure 3 shows the optimal
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Figure 3. Optimal trajectories of a reconfiguration for 3 satellites (The solid lines are for 2 = 0.0 and the dotted
lines for p = 2.0 and Ap = (1.0, 1.0, 1.0). SV1 indicates satellite 1 and so on).

Table 3. Results of some examples for case II (unit: 10°m?/sec®).

Fuel ©=0.0 = 0.5, Ap’ u=20,Ap? = 2.0,)\p3
Satellite 1 3.556 3717 3.848 4.120
Satellite 2 3.776 3.775 3.848 4.531
Satellite 3 3.711 3.717 3.848 3.708
Satellite 4 3.595 3717 3.848 4.120
Satellite 5 3.848 3.848 3.848 4.531

Total 18.486 18.774 19.240 21.010

TN, A2, A3, &g, As) = (1.0, 1.0, 1.0, 1.0, 1.0), Z(A1, Az, A3, M, As) = (1.0, 1.0, 1.0, 1.0, 1.0),
3(A1, A2, 23,24, A5) =(1.0,1.1,09,1.0, 1.1)

trajectories of reconfiguration in 3-dimensional space and horizontal plane. In the final formation,
all satellites constitute a PCO and an equilateral triangle in the horizontal plane.

4.2 Case II: Reconfiguration for 5 Satellites (formation re-sizing)

In this case, five satellites form a 2 km radius PCO and are evenly spaced in the horizontal plane
at the initial time. They develop into the PCO of 1 km radius and make an equilateral pentagon
in the horizontal plane at the final time. This kind of problem is usually called as formation re-
sizing. As the Case I, four examples are simulated for optimal trajectories using different u and
A values. Those results are presented in Table 3 whereas the optimal trajectories are displayed
in Figure 4. In the example of u = 0.0, each fuel cost of five satellites does not result in big
difference because of the formation re-sizing problem when compared with the case 1. The total fuel
shows only a small increase of 4 % over the example of = 0.0 in the example of u = 2.0 with
Ap = (1.0,1.0,1.0,1.0,1.0), but big increase of 59 % in Case 1. Thus the optimal trajectories of
# = 0.0 are similar to those of 11 = 2.0 with A, = (1.0,1.0, 1.0, 1.0, 1.0) in Figure 4b.
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Figure 4. Optimal trajectories of a reconfiguration for 5 satellites (The solid lines are for 1 = 0.0 and the dotted
lines for p == 2.0 and Ap = (1.0, 1.0,1.0, 1.0, 1.0)).
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Figure 5. Optimal trajectories of a reconfiguration for 3 satellites(The solid lines are for i = 0.0 and the dotted
lines for p = 2.0 and Ap = (1.0,1.0, 1.0, 1.0)).

4.3 Case III: Configuration for 4 Satellites

Unlike the Case I and Case II, this case tries configuration of four satellites. The position and
velocity of the four satellites may have any values at the initial time. However, they will also com-
plete a PCO with the radius of 1 km and make an equilateral square in the horizontal plane at the
final time. The results of examples are presented in Table 4 while optimal trajectories are shown in
Figure 5. In the case of 4 = 2.0 with A, = (1.0,1.0,1.0, 1.0), the total fuel cost is about twice
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Table 4. Results of some examples for case III (unit: 10°m?/sec®).

Fuel u =00 uo= 2.0, Ap! = 1.2, \p? u=2.0,\p>
Satellite 1 8.387 15.032 12.874 12.021
Satellite 2 15.790 15.032 14.161 14.692
Satellite 3 1.462 15.032 11.586 12.021
Satellite 4 5.665 15.032 14.161 13.357

Total 31.304 60.128 53.082 52.091

T(A1, X2, A3, A1) = (1.0, 1.0, 1.0, 1.0), Z(A1, Az, Ms, Aa) = (1.0, 1.1, 09, L.1),
3(A1, 22,23, 04, 25) = (09, 1.1, 0.9, 1.0)

the case of p = 0.0 for which the fuel cost of each satellite shows significant difference. Thus after
separation of satellites from a launch vehicle, it could be so important to assign the fuel consumption
rate to satellites from the consideration of formation configuration. In the previous examples of Case
I and 11, the desired optimal trajectories could not be obtained with a lower value of & than 2.0 in
assigning the fuel cost rate of each satellite. However, p = 1.2 could produce desirable solutions as
in the 4*" column of Table 4. The 5" column of Table 4 shows the fuel cost of all satellites on the
basis of the 4" satellite because A4 is 1.0 but others are not.

5. Conclusions

A direct optimization approach was introduced for the path planning of a PCO configuration of
multiple satellites. Collocation method in conjunction with NLP was applied to solve the optimiza-
tion problems that minimize the cost function including the fuel cost and the fuel assignment. The
new constraints were derived for the final configuration to make all satellites form a PCO and an
equilateral polygon in the horizontal plane. The method was simulated with some problems includ-
ing reconfiguration of three and five satellites and configuration of four satellites. It was shown from
the simulation results that the new method could provide desired solutions for trajectory planning of
SFF and appeared to be considerably robust. However, it took from a few minutes to a few hours
to solve them because of many constraints for the collision avoidance and final configuration. Even
though the method cannot generate the real-time trajectories in general, it can be considered as a
viable tool for the path planning of spacecraft formation flying controls.
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