DOI QR코드

DOI QR Code

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Received : 2018.11.16
  • Accepted : 2019.03.13
  • Published : 2020.01.31

Abstract

Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

Keywords

References

  1. J. R. Akeroyd and A. Dutta, A note on closed-range composition operators, Complex Anal. Oper. Theory 11 (2017), no. 1, 151-160. https://doi.org/10.1007/s11785-016-0586-8
  2. J. R. Akeroyd and S. R. Fulmer, Closed-range composition operators on weighted Bergman spaces, Integral Equations Operator Theory 72 (2012), no. 1, 103-114. https://doi.org/10.1007/s00020-011-1912-1
  3. J. R. Akeroyd and P. G. Ghatage, Closed-range composition operators on ${\mathbb{A}^2}$, Illinois J. Math. 52 (2008), no. 2, 533-549. http://projecteuclid.org/euclid.ijm/1248355348
  4. J. A. Cima, J. Thomson, and W. Wogen, On some properties of composition operators, Indiana Univ. Math. J. 24 (1974/75), 215-220. https://doi.org/10.1512/iumj.1974.24.24018
  5. C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
  6. M. Jovovic and B. MacCluer, Composition operators on Dirichlet spaces, Acta Sci. Math. (Szeged) 63 (1997), no. 1-2, 229-247.
  7. K. Kellay and P. Lefevre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl. 386 (2012), no. 2, 718-727. https://doi.org/10.1016/j.jmaa.2011.08.033
  8. D. H. Luecking, Inequalities on Bergman spaces, Illinois J. Math. 25 (1981), no. 1, 1-11. http://projecteuclid.org/euclid.ijm/1256047358 https://doi.org/10.1215/ijm/1256047358
  9. D. H. Luecking, Closed ranged restriction operators on weighted Bergman spaces, Pacific J. Math. 110 (1984), no. 1, 145-160. http://projecteuclid.org/euclid.pjm/1102711104 https://doi.org/10.2140/pjm.1984.110.145
  10. D. H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), no. 1, 85-111. https://doi.org/10.2307/2374458
  11. J. Pau and P. A. Perez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2013), no. 2, 682-694. https://doi.org/10.1016/j.jmaa.2012.12.052
  12. N. Zorboska, Composition operators with closed range, Trans. Amer. Math. Soc. 344 (1994), no. 2, 791-801. https://doi.org/10.2307/2154507
  13. N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2013-2023. https://doi.org/10.1090/S0002-9939-98-04266-X