DOI QR코드

DOI QR Code

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay (Department of Mathematics Deen Dayal Upadhyaya College University of Delhi) ;
  • Saini, Manisha (Department of Mathematics University of Delhi)
  • Received : 2018.11.26
  • Accepted : 2019.01.03
  • Published : 2020.01.31

Abstract

For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

Keywords

References

  1. I. Amemiya and M. Ozawa, Nonexistence of finite order solutions $w^{{\prime}{\prime}}$ + $e^{-z}w^{\prime}$ + Q(z)w = 0, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
  2. S. B. Bank, I. Laine, and J. K. Langley, On the frequency of zeros of solutions of second order linear differential equations, Results Math. 10 (1986), no. 1-2, 8-24. https://doi.org/10.1007/BF03322360
  3. P. D. Barry, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser. (2) 14 (1963), 293-302. https://doi.org/10.1093/qmath/14.1.293
  4. A. S. Besicovitch, On integral functions of order < 1, Math. Ann. 97 (1927), no. 1, 677-695. https://doi.org/10.1007/BF01447889
  5. M. Frei, Uber die subnormalen Losungen der Differentialgleichung $w^{{\prime}{\prime}}+e^{-z}{\cdot}w^{\prime}+konst.{\cdot}w=0$, Comment. Math. Helv. 36 (1962), 1-8. https://doi.org/10.1007/BF02566887
  6. G. G. Gundersen, On the question of whether $f^{{\prime}{\prime}}+e^{-z}f^{\prime}+B(z)f=0$ can admit a solution f $\not\equiv$ 0 of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17. https://doi.org/10.1017/S0308210500014451
  7. G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. Lond. Math. Soc. (2) 37 (1988), no. 1, 88-104. https://doi.org/10. 1112/jlms/s2-37.121.88 https://doi.org/10.1112/jlms/s2-37.121.88
  8. G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429. https://doi.org/10.2307/2001061
  9. G. G. Gundersen, Research questions on meromorphic functions and complex differential equations, Comput. Methods Funct. Theory 17 (2017), no. 2, 195-209. https://doi.org/10.1007/s40315-016-0178-7
  10. W. K. Hayman and J. F. Rossi, Characteristic, maximum modulus and value distribution, Trans. Amer. Math. Soc. 284 (1984), no. 2, 651-664. https://doi.org/10.2307/1999100
  11. J. Heittokangas, I. Laine, K. Tohge, and Z. Wen, Completely regular growth solutions of second order complex linear differential equations, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 985-1003. https://doi.org/10.5186/aasfm.2015.4057
  12. S. Hellerstein, J. Miles, and J. Rossi, On the growth of solutions of $f^{{\prime}{\prime}}+gf^{\prime}+hf$, Trans. Amer. Math. Soc. 324 (1991), no. 2, 693-706. https://doi.org/10.2307/2001737
  13. E. Hille, Lectures on Ordinary Differential Equations, A Wiley-Interscience Publication (JOHN WILEY & SONS), London, 1969.
  14. A. S. B. Holland, Theory of Entire Function, Academic Press, New York, 1973.
  15. I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
  16. J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439. https://doi.org/10.2996/kmj/1138037272
  17. J. Long, Growth of solutions of second order complex linear differential equations with entire coefficients, Filomat 32 (2018), no. 1, 275-284. https://doi.org/10.2298/fil1801275l
  18. J. Long, L. Shi, X. Wu, and S. Zhang, On a question of Gundersen concerning the growth of solutions of linear differential equations, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 337-348. https://doi.org/10.5186/aasfm.2018.4315
  19. J. R. Long, P. C. Wu, and Z. Zhang, On the growth of solutions of second order linear differential equations with extremal coefficients, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 365-372. https://doi.org/10.1007/s10114-012-0648-4
  20. M. Ozawa, On a solution of $w^{{\prime}{\prime}}+e^{-z}w^{\prime}+(az+b)w=0$, Kodai Math. J. 3 (1980), no. 2, 295-309. http://projecteuclid.org/euclid.kmj/1138036197 https://doi.org/10.2996/kmj/1138036197
  21. X. Wu, J. R. Long, J. Heittokangas, and K. E. Qiu, Second-order complex linear differential equations with special functions or extremal functions as coefficients, Electron. J. Differential Equations 2015 (2015), No. 143, 15 pp.
  22. S.-Z. Wu and X.-M. Zheng, On meromorphic solutions of some linear differential equations with entire coefficients being Fabry gap series, Adv. Difference Equ. 2015 (2015), 32, 13 pp. https://doi.org/10.1186/s13662-015-0380-3
  23. L. Yang, Value Distribution Theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.