References
- K. Astala and F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985), no. 1, 99-107. https://doi.org/10.1307/mmj/1029003136
- P. L. Duren, Theory of Hp spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970.
- F. W. Gehring and O. Martio, Quasidisks and the Hardy-Littlewood property, Complex Variables Theory Appl. 2 (1983), no. 1, 67-78. https://doi.org/10.1080/17476938308814032
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math. 36 (1979), 50-74. https://doi.org/10.1007/BF02798768
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439. https://doi.org/10.1007/BF01180596
- J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0131-8
- K. W. Kim, Inner uniform domains, the quasihyperbolic metric and weak Bloch functions, Bull. Korean Math. Soc. 49 (2012), no. 1, 11-24. https://doi.org/10.4134/BKMS.2012.49.1.011
- P. Koskela, An inverse Sobolev lemma, Rev. Mat. Iberoamericana 10 (1994), no. 1, 123-141. https://doi.org/10.4171/RMI/147
- N. Langmeyer, The quasihyperbolic metric, growth, and John domains, ProQuest LLC, Ann Arbor, MI, 1996.
- N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 205-224.
- E. Soultanis and M. Williams, Distortion of quasiconformal maps in terms of the quasihyperbolic metric, J. Math. Anal. Appl. 402 (2013), no. 2, 623-634. https://doi.org/10.1016/j.jmaa.2013.01.061
- J. Vaisala, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/BFb0061216