DOI QR코드

DOI QR Code

HARDY-LITTLEWOOD PROPERTY AND α-QUASIHYPERBOLIC METRIC

  • Kim, Ki Won (Department of Mathematics Education College of Education Silla University) ;
  • Ryu, Jeong Seog (Department of Mathematics Education College of Education Hongik University)
  • Received : 2018.12.10
  • Accepted : 2019.03.15
  • Published : 2020.01.31

Abstract

Hardy and Littlewood found a relation between the smoothness of the radial limit of an analytic function on the unit disk D ⊂ ℂ and the growth of its derivative. It is reasonable to expect an analytic function to be smooth on the boundary if its derivative grows slowly, and conversely. Gehring and Martio showed this principle for uniform domains in ℝ2. Astala and Gehring proved quasiconformal analogue of this principle for uniform domains in ℝn. We consider α-quasihyperbolic metric, kαD and we extend it to proper domains in ℝn.

Keywords

References

  1. K. Astala and F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985), no. 1, 99-107. https://doi.org/10.1307/mmj/1029003136
  2. P. L. Duren, Theory of Hp spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970.
  3. F. W. Gehring and O. Martio, Quasidisks and the Hardy-Littlewood property, Complex Variables Theory Appl. 2 (1983), no. 1, 67-78. https://doi.org/10.1080/17476938308814032
  4. F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math. 36 (1979), 50-74. https://doi.org/10.1007/BF02798768
  5. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439. https://doi.org/10.1007/BF01180596
  6. J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0131-8
  7. K. W. Kim, Inner uniform domains, the quasihyperbolic metric and weak Bloch functions, Bull. Korean Math. Soc. 49 (2012), no. 1, 11-24. https://doi.org/10.4134/BKMS.2012.49.1.011
  8. P. Koskela, An inverse Sobolev lemma, Rev. Mat. Iberoamericana 10 (1994), no. 1, 123-141. https://doi.org/10.4171/RMI/147
  9. N. Langmeyer, The quasihyperbolic metric, growth, and John domains, ProQuest LLC, Ann Arbor, MI, 1996.
  10. N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 205-224.
  11. E. Soultanis and M. Williams, Distortion of quasiconformal maps in terms of the quasihyperbolic metric, J. Math. Anal. Appl. 402 (2013), no. 2, 623-634. https://doi.org/10.1016/j.jmaa.2013.01.061
  12. J. Vaisala, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/BFb0061216