• Title/Summary/Keyword: sound technology

Search Result 1,733, Processing Time 0.027 seconds

Changes of Sound Absorption Capability and Anatomical Features of Wood by Delignification Treatment (탈리그닌처리에 의한 목재의 흡음성능과 구조적 특징의 변화)

  • Kang, Chunwon;Lee, Namho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.9-14
    • /
    • 2005
  • Changes of sound absorption capability and anatomical features of wood by delignification treatment was estimated. Sound absorption coefficients of wood and delignificated wood had been measured by the two microphone method and anatomical changes of delignificated wood examined by SEM observation. The sound absorption coefficients of delignificated wood generally seemed to be higher than those of normal specimen. Especially, in the frequency range of 2 to 4 KHz, they was about 50% higher than those of normal specimen. Abundant small cracks generated on the cross sectional surface of delignificated wood and the weight of delignificated wood decreased about 8% than that of normal wood. It was considered that the small cracks formed by delignification treatment behaved as a sound absorbing pore.

Development of a Sound Art Programming Course for Non-Majors (비전공자를 위한 사운드 아트 프로그래밍 교과목 개발)

  • Kwon Hyunwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2024
  • This study developed a sound art programming course using pure data to foster computational thinking and convergence of art and technology in college students who are non-computer majors. This paper presents an example of operating a curriculum that designed and developed a sound art-centered music programming subject using Pure Data, derives educational outcomes and improvement measures for classes, and presents a creative convergence education program of technology and art. It has a purpose. For the study, we looked at examples of educational programs that combine art and technology, as well as pure data and sound art, and based on this, we designed and developed a sound art programming course for non-majors. The curriculum was operated based on the developed subjects, and the results showed increased interest in programming through art and technology convergence classes, active class participation through autonomous choice, creation of a new perspective on art, improvement of computational thinking skills, collaboration and communication. The educational effect of ability enhancement was confirmed. We expect that this study will be able to present a new perspective on the convergence education of art and technology, including artistic diversity and understanding of new media according to the development of media.

Realization of Scattering Acoustic Holography using Plane-wave Decomposition (평면파 분리 방법을 이용한 산란 음향 홀로그래피의 구현 방법론)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.498-501
    • /
    • 2006
  • When an object or objects, rigid or flexible, presents in incident sound field, the sound wave is scattered. This, we call, is scattered sound field. It, of course, depends on the amplitude and the direction of the incident sound field as well as the geometry and the surface impedance of the scatterer(object). This paper addresses the way to measure scattered sound field by using arbitrary incident sound wave. This means that the method can decompose the scattered field from measured sound field with respect to any magnitudes and directions of incident plane-waves.

  • PDF

A Study on Elemental Technology Identification of Sound Data for Audio Forensics (오디오 포렌식을 위한 소리 데이터의 요소 기술 식별 연구)

  • Hyejin Ryu;Ah-hyun Park;Sungkyun Jung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • The recent increase in digital audio media has greatly expanded the size and diversity of sound data, which has increased the importance of sound data analysis in the digital forensics process. However, the lack of standardized procedures and guidelines for sound data analysis has caused problems with the consistency and reliability of analysis results. The digital environment includes a wide variety of audio formats and recording conditions, but current audio forensic methodologies do not adequately reflect this diversity. Therefore, this study identifies Life-Cycle-based sound data elemental technologies and provides overall guidelines for sound data analysis so that effective analysis can be performed in all situations. Furthermore, the identified elemental technologies were analyzed for use in the development of digital forensic techniques for sound data. To demonstrate the effectiveness of the life-cycle-based sound data elemental technology identification system presented in this study, a case study on the process of developing an emergency retrieval technology based on sound data is presented. Through this case study, we confirmed that the elemental technologies identified based on the Life-Cycle in the process of developing digital forensic technology for sound data ensure the quality and consistency of data analysis and enable efficient sound data analysis.

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Implementation of On-site Audio Center based on AoIP

  • Lee, Jaeho;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • Recently, rapid advances of Ethernet and IP technology have brought many changes in the sound industry. In addition, due to AoIP-based audio transmission technology, various problems of the acoustic system (sound quality deterioration due to long distance transmission, complicated wiring) have improved dramatically. However, when many distributed audio systems are connected with AoIP equipment, if there is a problem in the equipment, it is impossible to operate the connected system. AoIP equipment only can transmit audio signals but cannot adjust the system for acoustic environment. In this paper, AoIP equipment is to be installed with sound equipment on a one-to-one basis, so that various existing problems can be solved and adjustment of sound quality (reverberation, echo, delay and EQ) can be possible by AoIP-based OAC (On-site Audio Center) with built-in DSP function. As a result, uncompressed real-time transmission by distributed transmission/receipt module in OAC (On-site Audio Center) and high quality sound by adjustment of sound quality with built-in DSP can be acquired. It is expected that OAC based sound system will be the industry standard in ubiquitous environment.

Variability of Underwater Sound Propagation in the Northern Part of the East Sea (동해 북부해역의 수중음파전달 변동성)

  • Lim, Se-Han;Yun, Jae-Yul;Kim, Yun-Bae;Nam, Sung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.52-61
    • /
    • 2007
  • Temporal and spatial variations of sea water largely affect on the pattern of underwater sound propagation. Acoustic environmental changes and their effects on underwater sound propagation in the northern part of the East Sea, which have been poorly studied mainly due to lack of observations, are investigated by analyzing the hydrographic data acquired since 1993. Severe changes in acoustic environments are associated with various physical processes such as deep convection, thermal fronts, and eddies in the northern part of the East Sea. Spatio-temporal variations of sound speed field and the layer of the maximum sound speed are categorized into six typical cases. Using a sound source of 5 kHz, acoustic transmission losses are calculated range-independently for the six typical cases. Significant differences among the patterns of transmission loss in the six cases suggest that a different tactics are required when we operate in the northern part of the East Sea.

Sound Absorption and Physical Properties of Carbonized Fiberboards with Three Different Densities

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.555-562
    • /
    • 2014
  • Characteristics of carbonized fiberboard such as chemical materials absorption, electromagnetic shielding, and electrical and mechanical performance were determined in previous studies. The carbonized board therefore confirmed that having excellent abilities of these characteristics. In this study, the effect of density on physical properties and sound absorption properties of carbonized fiberboards at $800^{\circ}C$ were investigated for the potential use of carbonized fiberboards as a replacement of conventional sound absorbing material. The thickness of fiberboards after carbonization was reduced 49.9%, 40.7%, and 43.3% in low density fiberboard (LDF), medium density fiberboard (MDF), and high density fiberboard (HDF), respectively. Based on SEM images, porosity of carbonized fiberboard increased by carbonization due to removing adhesives. Moreover, carbonization did not destroy structure of wood fiber based on SEM results. Carbonization process influenced contraction of fiberboard. The sound absorption coefficient of carbonized low density fiberboard (c-LDF) was higher than those of carbonized medium density fiberboard (c-MDF) and carbonized high density fiberboard (c-HDF). This result was similar with original fiberboards, which indicated sound absorbing ability was not significantly changed by carbonization compared to that of original fiberboards. Therefore, the sound absorbing coefficient may depend on source, texture, and density of fiberboard rather than carbonization.