• 제목/요약/키워드: soil modulus

검색결과 427건 처리시간 0.03초

공진주 시험을 이용한 섬유보강토의 동적변형특성 (Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests)

  • 장병욱;허준;박영곤;차경섭;우철웅
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

점토의 압축성을 고려한 전단탄성계수의 정식화 방법에 대하여 (On the compressibility and elastic shear modulus of clay)

  • 황성춘;오병현;박성진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.91-97
    • /
    • 2001
  • Case records comprising the results of down-hole seismic surveys collected at nine sites worldwide, together with comparative results of laboratory bender element tests on reconstituted clay samples, were examined in an attempt to quantify the shear modulus of normally consolidated clays at very small strain of the order of 0.001%. The shear modulus G$_{max}$ under the current state of stresses is given in a formula which includes a newly proposed void ratio function. An empirical expression incorporating the new void ratio function is also proposed for practical use in estimating G$_{max}$ profiles with depth in natural soil deposits from routinely available borehole data.ata.

  • PDF

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향 (Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect)

  • 박두희;하샤시 유세프;이현우;김재연
    • 한국지반공학회논문집
    • /
    • 제22권3호
    • /
    • pp.23-35
    • /
    • 2006
  • 등가선형해석은 지반증폭현상을 모사하기 위하여 널리 사용되고 있으며, 해석 시 흙의 거동은 하중의 주파수의 영향을 받지 않는다고 가정되어왔다. 반면, 실내시험은 점성토의 경우 하중의 주파수의 영향을 크게 받는다는 것을 보여주고 있다. 본 연구에서는 하중의 주파수가 흙의 동적 거동에 미치는 영향을 고려하는 새로운 등가선형해석기법이 개발되었으며 주파수의 영향을 규명하기 위하여 지반응답해석을 수행하였다. 해석 결과, 하중의 주파수에 따라서 변화하는 전단탄성계수가 지반응답에 미치는 영향은 작은 반면 감쇠비는 큰 영향을 끼치는 것으로 판명되었다. 이는 하중의 주파수가 높아질수록 흙의 감쇠비도 같이 증가하며 이로 인하여 지진파의 고주파수 요소가 필터링 되기 때문이다. 따라서, 하중의 주파수에 지배 받는 흙의 거동은 특히 고주파수 요소가 풍부한 지진파 전파 모사 시 특히 중요하다고 판단된다.

고결모래의 콘선단저항과 변형계수의 관계 (Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand)

  • 이문주;최성근;추현욱;이우진
    • 한국지반공학회논문집
    • /
    • 제24권12호
    • /
    • pp.53-63
    • /
    • 2008
  • 본 연구에서는 대형 챔버시험을 통해 결정된 고결모래의 콘선단저항과 고결모래의 횡방향구속 변형계수, 일축압축 강도, 전단강도와의 관계를 검토하였다. 시험결과 모래의 상대밀도나 연직구속압 뿐만 아니라 고결효과가 커질수록 콘선단저항과 횡방향구속 변형계수가 증가하였다. 모래의 횡방향구속 변형계수는 상대밀도나 연직구속압보다 고결의 영향이 더 크게 작용하며, 반면 콘선단저항은 변형계수보다 상대밀도나 연직구속압의 영향이 더 크게 나타났다. 고결결합 미파괴 상태로 간주될 수 있는 일축압축강도, 전단강도, 횡방향구속 변형계수와는 달리 콘선단저항은 고결결합을 파괴하며 측정되기 때문에, 고결모래의 변형계수를 $70{\sim}85%$ 정도 과소평가하였다. 또한 본 연구에서는 회귀분석을 통해 고결모래의 콘선단저항과 전단강도의 관계, 콘선단저항과 일축압축강도의 관계, 그리고 횡방향구속 변형계수와 콘선단저항, 일축압축강도의 관계가 표현되었다.

대형자연시료 채취를 통한 시료 교란도 분석에 관한 연구 (A Study on Disturbance Effect of Clay by Block Sampling)

  • 신윤섭;김연정;김학중;김영웅
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.325-332
    • /
    • 2003
  • In general, soil characteristics are estimated through the sample gathered by field boring without considering sample disturbance. However, soil characteristics must be changed by the degree of sample disturbance. Therefore it be need to estimate the soil characteristic considering sample disturbance which can be occurred by the change of stress condition, sampling technique and handling method. On this study, we analyzed the sample disturbance by using the methods of volume change, residual effective stress, elastic modulus and the curve of consolidation tests. In order to estimate the relationship between sample disturbance and soil characteristics, we used the piston sample and the block sample. As the results, it should be considered in design that the disturbance of the block sample, which affects the strength and compression properties of clay, is smaller than the disturbance of piston sample.

  • PDF

중형 공진주 시험기를 이용한 보조도상 재료의 동적특성 정량화 (Evaluation of Dynamic Properties of Subballast Materials Used in Korea Using Midsize Resonant Column Test Apparatus)

  • 임유진;신중훈;박경수;박재학;황정규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1214-1221
    • /
    • 2011
  • It is an well-known fact that dynamic properties should be considered in design and maintenance of civil structures undergoing dynamic force such as rail track. For designing of the rail tack structures, dynamic properties of track bed soil such as shear modulus (G) and damping coefficients(D) obtained in small to medium range of shear strain must be known. In general, small size sample of D=5 cm and H=10cm has been used mostly for test convenience. However, ratio of largest particle diameter of the soil to sample diameter is very important and affects to the values of dynamic soil properties in track bed. In this study, an RC/TS test apparatus was built and was run for testing a medium size soil sample that can handle with compacted soil sample up to 10 cm diameter and 20 cm height.

  • PDF

지진시 지반-터널 상호작용 및 면진 효과 (Soil-Tunnel Interaction and Isolation Effect during Earthquakes)

  • 김대상
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.120-127
    • /
    • 2001
  • Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction and isolation effect for this particular vibration mode is investigated. Interaction effect is considered with the condition of fixed tangential strain between the tunnel and the soil. Isolation effect embodied by covering up the tunnel with isolation materials is discussed as a possible measure for mitigating seismic damage to it. When Poisson`s ratio of isolation material decreases or the shear modulus ratios of the soil to isolation material become large, the isolation effect becomes bigger.

  • PDF

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • 제5권4호
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.