DOI QR코드

DOI QR Code

Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand

고결모래의 콘선단저항과 변형계수의 관계

  • Lee, Moon-Joo (Dept. of Civil, Environmental, and Architectural Engrg. Korea Univ.) ;
  • Choi, Sung-Kun (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Choo, Hyun-Wook (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil, Environmental, and Architectural Engrg., Korea Univ.)
  • 이문주 (고려대학교 건축.사회환경공학과) ;
  • 최성근 (고려대학교 건축.사회환경공학과) ;
  • 추현욱 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과)
  • Published : 2008.12.31

Abstract

In this study, the cone tip resistances of cemented sand are measured by performing a series of miniature cone penetration tests in large calibration chamber, and the relations with constrained modulus, unconfined compressive strength, and shear strength of cemented sand are suggested. Experimental results show that both the cone tip resistance and constrained modulus of sand increase with increasing cementation effect as well as relative density and confining stress. However, it is observed that the relative density and confining stress have more significant influence on cone tip resistance than constrained modulus of cemented sand. Since the cone penetration into the ground induces the damage of cementation, the cone tip resistance can't properly reflect the cementation effect of sand. An analysis based on the constrained modulus shows that the measured cone tip resistance underestimates the deformation modulus of cemented sand by about $70{\sim}85%$. In addition, this study establishes various relationships among the above soil properties from the regression analysis.

본 연구에서는 대형 챔버시험을 통해 결정된 고결모래의 콘선단저항과 고결모래의 횡방향구속 변형계수, 일축압축 강도, 전단강도와의 관계를 검토하였다. 시험결과 모래의 상대밀도나 연직구속압 뿐만 아니라 고결효과가 커질수록 콘선단저항과 횡방향구속 변형계수가 증가하였다. 모래의 횡방향구속 변형계수는 상대밀도나 연직구속압보다 고결의 영향이 더 크게 작용하며, 반면 콘선단저항은 변형계수보다 상대밀도나 연직구속압의 영향이 더 크게 나타났다. 고결결합 미파괴 상태로 간주될 수 있는 일축압축강도, 전단강도, 횡방향구속 변형계수와는 달리 콘선단저항은 고결결합을 파괴하며 측정되기 때문에, 고결모래의 변형계수를 $70{\sim}85%$ 정도 과소평가하였다. 또한 본 연구에서는 회귀분석을 통해 고결모래의 콘선단저항과 전단강도의 관계, 콘선단저항과 일축압축강도의 관계, 그리고 횡방향구속 변형계수와 콘선단저항, 일축압축강도의 관계가 표현되었다.

Keywords

References

  1. 김기영, 박한규, 전제성 (2005), 'Cemented sand and gravel 재료의 강도특성', 한국지반공학회논문집, Vol.21, No.10, pp.61-71
  2. 이문주, 최성근, 조용순, 이우진 (2008a), '고경모래의 강도정수와 일축압축강도 관계', 2008 한국지반공학회 봄학술발표회 논문집, pp.14-21
  3. 이문주, 최성근, 추현욱, 이우진 (2007), '웅력조건에 따른 고결모래의 강도특성 평가', 한국지반공학회논문집, Vol.23, No.5 pp.143-151
  4. 이문주, 최성근, 추현욱, 조용순, 이우진 (2008b), '낙사법으로 조성원 대형 석고 고결시료의 균질성', 한국지반공학회논문집, Vol.24 No. 1. pp.91-99
  5. 최성근, 이문주, 추현욱, 홍성진 이우진 (2007), 'Porous plat를 이용한 개성된 레이닝 시스템', 한국지반공학회논문집, Vol.23, No.6. pp.67-76
  6. Akili. W., and Al-Joulani, N. M. (1988), 'Cune pentration tests on artificially cemented sands', Proceedings of the 1st International Symposium on Penetration Testing, Vol.2, Orlando, Florida, pp. 607-614
  7. Akili, W. (2006). 'Slatic cone penetration resistance of cemented sands: A laboratory investigation'. Proceedings. GeoCongress 2006, Atlanta, GA, pp.1-6
  8. AkiH, W., and Torrance, J. K. (1981), 'Thedevelopment and geotechnical problems of sabkha, with preliminary experiments on the static penetration resistance of cemented sands', Quanerly Journal of Engineering Geology and Hydrogeology, Vol.14, No.1, pp.59-73 https://doi.org/10.1144/GSL.QJEG.1981.014.01.05
  9. Baldi, G., Bellotti, R., Ghionna, V., and Jamiolkowski, M. (1988), 'Stiffness of sands from CPT, SPT and DMT', Proceeding, Penetration Testillg in the UK, Birmingham, pp.299-305. Thomas Telford, London
  10. Baldi, G., Bellotti, R., Ghionna., V., Jamiolkowski. M., and Pasqualini, E, (1981), 'Cone resistance of a dry medium sand', Proceedings of the 10th International Conferetrce on Soil Mechwlies and Foundation Engineering. Stockholm, Vol.2, 427-432
  11. Saldi, G., Bcllotti, R., Ghionna, V., Jamiolkowski. M.. and Pasqualini. E. (1986). 'Interpretation of CPTs and CPTUs; second pari: drained penetration of sands', Proceedings of the Fourth Internaional Geotechnical Seminar. Singapore, pp.143- 156
  12. Been, K., Crooks. J. H, Secker, D. E., and Jefferies. M. G. ( 1986), 'Thc cone penetration test in sand: part l. state parameter interpretation', Geotechnique, Vol.36, No.2. pp.239-249 https://doi.org/10.1680/geot.1986.36.2.239
  13. Clough, W. G., Sitar N., and Bachus R. (1981), 'Cemented sands under static loading', Journal of Geotechnical Engineering Division. ASCE, Vol.107. No.6. pp.799-817
  14. Consoli, N. C., Foppa, D, Festugato. L., and Heineck, K. S. (2007), 'Key parameters for strength control of antificially cemented soils', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133. No.2, pp.197-205 https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)
  15. Consoli, N. C., Rotta, G. V., and Prietto. P. D. M. (2000), 'Influence of curing under Stress on the triaxial response of cemented soils'. Geotechnique. Vol.50. No.1, pp.99-105 https://doi.org/10.1680/geot.2000.50.1.99
  16. Dupas, J., and Peker, A. (1979), 'Static and dynamic properties of sand-cement', Journal of Geotechnical Engineering Division, ASCE, Vol.105. No.3, pp.419-436
  17. lsmail, M. A., Jaer, H. A .. Sim, W. H., and Randolph, M. F. (2002), 'Effect of cement type on shear behavior of cemented calcareous soil', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128. No.6, pp.520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  18. Jamiolkowski. M., Lo Presti, D. C. F., and Manassero, M. (2003), 'Evaluation of relative density and shear strength of sands from CPT and DMT', Soil Behavior and Soft Ground Construction, ASCE GSP 119, pp.201-238
  19. Jamiolkowski. M., Ladd. C. C., Germaine. J. T., and Lancellotta, R. (1985). 'New Developments in Field and Laboratory Testing of Soils', Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco. pp. 57-153, Balkema, Rotterdam
  20. Joshi. R. C., Achari. G., Kaniraj. S. R., and Wijeweera. H. (1995). 'Effect of aging on the penetration resistance of sands', Canadian Geotechnical Journal, Vol.32, pp.767-782 https://doi.org/10.1139/t95-075
  21. Kim. T. J. (2005). Dissipation of porewater pressure due to piezocone penetration in OC clay, Ph.D dissertation. Korea University
  22. Kulhawy, F. H., and Mayne, P. H. ( 1990), Manual on estimating soil properties for foundation design, Electric Power Researeh Institute, EPRI
  23. Luune, T., and Christophersen, H. P. (1983), 'Interpretation of cone penetrometer data for offshore sands', Prodings of the Offshore Technology Conference, Richardson. Texas, Paper No.4464
  24. Parkin, A. K., and Lunne, T. (1982), 'Boundary effects in the laboratory calibration of a cone penetrometer in sand' , Proceeding of 2nd European Symposium on Penteratoin Testing. Orlando, Vol.1. pp.221 -243, Balkema, Rotterdam
  25. Puppala, A. J., Acar, Y. B., and Senneset, K. (1993). 'Cune penetration in cemented Sands : bearing capacity interpretation, Journal of Geotechnical Engineering, ASCE, Vol.119, No.12, pp. 1990-2001 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1990)
  26. Puppala, A. J., Acar, Y. B., and Tumay, M. T. (1995). 'Cone penetration in very weakely cemented sand'. Journal of Geotechnical Engineering, ASCE, Vol.121, No.8. pp.589-600 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  27. Rad. N. S., and Clough.. G. W. (1982), The influence of cementation on the static and dynamic behavior of sands, Report No.59, The John A. Blume Eanhquake Engineering Center, Stanford University, Stanford, Calif
  28. Rad, N. S., and Tumay, M. T. (1986). 'Effect of cementation on the cone penetration resistance of sand', Use of In Situ Tests in Geotechnical Engineering, GSP 6, ASCE, New York, pp.926-948
  29. Robertson, P. K., and Campanella, R. G. (1983), 'Interpretation of cone penetrometer test: Pan I: Sand', Canadian Geotechnical Journal, Vol.20. No.4. pp.718-733 https://doi.org/10.1139/t83-078
  30. Salgado, R., Mitchell, J. K., and Jamiolkowski. M. (1998), 'Calibration chamber size effects on penetration resistance in sand', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124. No.9. pp.878-888 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878)
  31. Schmertmann.. J. H. (1976), An updated correlation between relative density and Fugro type electric cone bearing, Contract Report DACW 9-76-M 6646, Waterways Experiment Station, Vicksburg. Miss
  32. Schnaid. F. Prietto. P. D. M., and Consoli, N. C. (2001), 'Characterization of cemented sand in triaxial compression', Journal of Geotechnieal Engineering, ASCE, Vol.127, No.10, pp.857-868 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  33. Sweeney, B. P., and Clough, G. W. (1990), 'Design of a large calibration chamber', Geotechnical Testing Journal, ASTM, Vol.13, No.1, pp.36-44 https://doi.org/10.1520/GTJ10144J