• Title/Summary/Keyword: settlement of pile

Search Result 409, Processing Time 0.028 seconds

Carrying Capacity Behavior of Instrumented PC Piles (시험 콘크리트 말뚝의 지지력 거동)

  • 이영남;이종섭
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.163-172
    • /
    • 1998
  • To study the carrying capacity behavior of pile, dynamic pile testis and static load tests were carried out on two instrumented piles during and some time after pile driving. Cone Penetration Test( CPT) and Standard Penetration Test(SPT) were also performed at the test site before pile tests to investigate the relationship between unit skin friction of piles and cone tip resistance values and SPT N values. Total static capacity of pile reached the ultimate stage at the pile head settlement of about 0.055D (D : Pile diameter), at which skin friction of Pile already Passed the maximum value, but the end bearing was still increasing with the pile head settlement. The carrying capacity of pile increased in the form of natural logarithmic function with the time after pile driving. The increase in skin friction with time was very substantial the increase in skin friction 40 days after pile driving was 4.6 times of that determined during pile driving. The contribution of skin friction to the total capacity twas insignificant in the beginning, but became substantial 40 days after pile driving. This implies that the tested pile initially responded as an end bearing pile and later behaved as a friction pile. It was also noted that unit skin friction of pile might be ielated to cone tip resistance values(q.) and SPT N values, though the coefficient of this relationship might differ from one soil group to another and was somewhat greater than the value used in the design practice of Korea.

  • PDF

Numerical Study of Settlement Reduction Ratio for the Bottom Ash Mixture Compaction Pile (수치해석적 방법에 의한 저회혼합다짐말뚝의 침하저감비에 관한 연구)

  • Chu, Ickchan;Kim, Gooyoung;Do, Jongnam;Cho, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • In general, sand compaction pile(SCP) method and gravel compaction pile(GCP) method have been mainly used to reinforce soft soils such as soft clay or loose sandy ground. But the sand compaction pile method has problems such as lack of sand supply and destroying the nature while collecting sand, the gravel compaction pile method has a problem such as decreased permeability of the drainage material due to clogging. Recently, the study to replace sand with bottom ash which has similar engineering properties with sand is in active. As a fundamental research on bottom ash mixture compaction pile utilizing bottom ash, its behavioral characteristics depending on granular materials and replacement ratio has been simulated numerically. In particular, Settlement Reduction Ratio(SRR) according to the distance from the center of pile was calculated. The main findings were as follows. Change values of Mixture Compaction Pile's SRR according to granular materials showed similar patterns and stiffness of the composite soil is increased depending on the replacement ratio so SRR showed decreased patterns. Especially, when the replacement ratio is in 20~40%, it increase significantly. When the replacement ratio is over 40%, it increase slowly. When considering the economics, 30~40% replacement ratio is appropriate.

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles (사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.337-356
    • /
    • 2012
  • Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

A Study of Field Test on Bearing Capacity Increase Effect of Single Stone Column (단일쇄석말뚝의 지지력 증가효과에 관한 현장실험 연구)

  • Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.5-11
    • /
    • 2007
  • Among soft ground improvement methods by using granular material, the sand compaction pile method has been widely utilized in Korea, but, as a result of shortage and increase of unit price of sand, a necessity of an alternative method has been required. In this study, a series of in-situ static load tests for crushed-stone compaction piles were performed. Pile diameter was fixed to 700mm and areas of loading plates were changed. The static load tests were performed for area replacement ratios of 20, 30 and 40% respectively. Based on the test results, bearing capacity of single crushed-stone compaction pile was estimated. It showed that the settlement decreases as the replacement ratio increases. Also, a yielding capacity equation of the crushed-stone compaction pile considering replacement ratio was suggested.

An Experimental Study on the Behavior of Composite Ground Improved by SCP and GCP with Low Replacement Ratio (저치환율 SCP와 GCP로 개량된 복합지반의 거동에 관한 실험적 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Young-Uk;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.936-942
    • /
    • 2013
  • This paper presents the results of laboratory tests conducted to investigate the effectiveness of applying methodology of a sand compaction(SCP) and a gravel compaction pile(GCP) on soft ground. The test conditions involved relatively low replacement ratios (=10, 20, and 30%) of a pile to unit cell at 1g (gravity acceleration) level. Results revealed that GCP significantly enhanced bearing capacity, settlement reduction, and consolidation rate compared with SCP.

Case studies on construction and design in Colombo port, Sri Lanka (스리랑카 콜롬보항만 시공 및 설계사례 (ELIPO 및 COLPO 현장))

  • Lee, Seung-Won;Chung, Yoon-Young;Lee, Gab-Yeol;Park, Kyoung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.44-57
    • /
    • 2010
  • The purpose of this paper is to introduce case studies on 2 projects for the construction of port facilities in Colombo, Sri lanka. In Queen Elizabeth quay development project in 2000, the damage at the bottom of steel tubular piles were occurred when piles were driven into subsoil for piled wharf structure in Stage 1. In order to prevent same incident in Stage 2 & 3, the pile driveability analysis were executed by dynamic formulas, analysis program, test driving and pile load tests. Through pile driveability analysis, prevention plans were proposed. In Colombo port expansion project in 2008, the mv method was applied to predict a primary consolidation settlement of a subsoil under a breakwater in the calculation stage. The $m_v$ was estimated from results of cone penetration tests and the final settlement by consolidation was calculated with it.

  • PDF