DOI QR코드

DOI QR Code

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis -

사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -

  • Park, Mincheol (Seoul Institute of Technology) ;
  • Kwon, Oh-Kyun (Dept. of Civil Engrg., Keimyung Univ.) ;
  • Kim, Chae Min (Dept. of Civil, Environmental and Urban Engrg., Kyungsung Univ.) ;
  • Yun, Do Kyun (Dept. of Civil Engrg. in Graduate School, Kyungsung Univ.) ;
  • Choi, Yongkyu (Dept. of Civil, Environmental and Urban Engrg., Kyungsung Univ.)
  • 박민철 (서울기술연구원) ;
  • 권오균 (계명대학교 공과대학 건축토목공학부) ;
  • 김채민 (경성대학교 건설환경도시공학부) ;
  • 윤도균 (경성대학교 대학원 토목공학과) ;
  • 최용규 (경성대학교 공과대학 건설환경도시공학부)
  • Received : 2019.09.22
  • Accepted : 2019.10.04
  • Published : 2019.10.31

Abstract

A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

본 연구에서는 사질토층을 지나 풍화암에 4D 소켓된 매입 PHC말뚝에 대하여 PHC말뚝 직경과 길이 및 사질토 지반의 N값에 따른 매개변수 수치해석을 실시하였다. PHC말뚝과 지반은 Mohr-Coulomb의 탄 소성모델을 적용하였으며, 말뚝 주변 경계면은 가상두께의 인터페이스를 설정하였다. 10종류 직경의 PHC말뚝에 대한 수치해석 결과를 분석하여 사질토의 N값에 따른 말뚝머리 하중-침하 곡선과 말뚝의 근입길이에 따른 축하중 분포도 곡선을 구하였다. 또한 이들 결과로부터 각 하중 성분과 침하 사이의 관계 곡선을 구하였으며, 하중 성분은 전체 하중, 전체 주면마찰하중, 사질토의 주면마찰하중, 풍화암의 주면마찰하중 및 풍화암의 선단하중으로 구분하였다. 수치해석으로부터 구한 하중-침하 곡선에서 변곡상태가 나타나는 하중을 분석한 결과, 대체로 변곡상태를 나타내는 하중 단계는 말뚝 직경의 약 5~7% 수준의 침하량으로 나타났으며, 안전측으로 말뚝직경의 5% 침하량에 해당하는 하중으로 평가하였다. 이 하중 단계를 동원지지력($Q_m$)으로 정의하였으며, 본 연구의 지지력 분석에 사용하였다. 매개변수 수치해석 결과, PHC 말뚝 직경, 상대근입길이 및 사질토의 N값에 관계없이 SRF는 평균적으로 70% 이상으로 나타났다. 또한 전체마찰지지력에서 사질토의 주면마찰지지력이 평균 80% 이상으로 나타났다. 이러한 결과는 매입 PHC말뚝의 지지력 산정에 이용할 수 있으며, 또한 새로운 지지력 산정방법 제안을 위한 연구에도 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Brinkgreve, R. B. J., Kumarswamy, S., and Swolfs, W. M. (2015), "Reference Manual, Plaxis 3D 2015 user's manual", (Edited by Brinkgreve, R.B.J., Kumarswamy, S. and Swolfs, W. M), pp.1-284.
  2. Chen, W. F. (1982), Plasticity in Reinforced Concrete, McGraw- Hill Co.
  3. Choi, Y. K., Kwon, O. K., Lee, W. J., and Yeo, K. K. (2017), Report for axial compressive load behavior of PHC piles with various end bearing types, KGS, Report No. KGS09-038, 2017. 9., p.160. (in Korean)
  4. Choi, Y. K., Kwon, O. K., Lee, W. J., Yeo, K. K., and Park, M.C. (2019a), A Study for Establishing of Behavior, Design and Construction on Prebored and Precast Piles (Development of Capacity Prediction Method and Chart for Prebored and precast Piles Considering Soil Types, Pile Penetration Lengths, Pile Diameter), Report No. KGS 2019-083, pp.21-45, pp.273-300. (In Korean)
  5. Choi, Y. K., Lee, W. J., Lee, C. U., and Kwon, O. K. (2019b), "Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layers - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data -", Journal of the Korean Geotechnical Society, Vol.35, No.8, August 2019, pp.17-30. (In Korean) https://doi.org/10.7843/KGS.2019.35.8.17
  6. Comodromos, E. M. and Pitilakis, K. D. (2005), "Response Evaluation for Horizontally Loaded Fixed‐head Pile Groups Using 3-D Non-linear Analysis", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.29, No.6, pp.597-625. https://doi.org/10.1002/nag.428
  7. Do, J. N., Sim, J. W., and Park, Y. H. (2013), "Study on Strength Characteristics of Cement Milk According to Water-Cement Ratio", Conference of Korean Geo-environmental Society, pp.173-176. (in Korean)
  8. Dunham, J. W. (1954), "Pile Foundation for Building", Proc. ASCE, Soil Mechanics and Foundations Division, Vol.80, No.285.
  9. Fellenius, B. H. (2004), "Unified design of piled foundations with emphasis on settlement anysis", Geo-Trans Conference, Los Angeles, ASCE Geotechnical Special Publication 125, pp.253-275.
  10. Jung, G. J., Kim, D. H., Lee, C. J., and Jeong, S. S. (2017), "Analysis of Skin Friction Behavior in Prebored and Precast Piles Based on Field Loading Test", Journal of the Korean Geotechnical Society, Vol.33, No.1, January, pp.31-38. https://doi.org/10.7843/kgs.2017.33.1.31
  11. Kim, S. H., Jung, G. J., Jeong, S. S., Jeon, Y. J., Kim, J. S., and Lee, C. J. (2017), "A Study on the Behavior of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Anaylsis", Journal of the Korean Geo-Environmental Society, Vol.18, No.7, pp.37-47. https://doi.org/10.14481/jkges.2017.18.1.37
  12. Kim, S, Y., Lee, S. H., Park, J. H., and Jeong, M. K. (2009a), "Analysis of Reinforcing Effect of Steel-Concrete Composite Pile by Numerical Analysis (I) - Material Strength -", Journal of Korean Society of Civil Engineers, Vol.29, No. 6C, pp.259-266. (in Korean)
  13. Kim, S. Y., Lee, S. H., Jeong, M. K., and Lee, J. H. (2009b), "Analysis of Reinforcing Effect of Steel-Concrete Composite Pile by Numerical Analysis (II) - Soil Capacity -", Journal of Korean Society of Civil Engineers, Vol.29, No.6C, pp.267-275. (in Korean)
  14. Lee, C.J. (2012), "The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock", Journal of the Korean Society of Civil Engineers, 32(5C), pp.199-210. https://doi.org/10.12652/Ksce.2012.32.5C.199
  15. Lee, Y. J. and Lee, J. M. (2012), "Investigation of Strain Behaviour around the Tip of Model Pile-Comparison between Laboratory Model Test and Numerical Analysis", Journal of The Korean Society of Civil Engineers, 32(4C), pp.159-167. https://doi.org/10.12652/Ksce.2012.32.4C.159
  16. MIDAS I. T. (2013), GTS NX on-line manual, MIDAS Information Technology Co., Ltd.
  17. Park, J. H., Kim, S. R., Lee, C. H., and Chung, M. K. (2011), "Evaluation of Bearing Capacities of Large Size Non-weled Composite Piles by 3-Dimensional Numerical Analysis", Journal of Ocean Engineering and Technology, Vol.25, No.6, pp.35-41. https://doi.org/10.5574/KSOE.2011.25.6.035
  18. Potts, D. M. (2003), "Numerical Analysis: A Virtual Dream or Practical Reality", Geotechnique, 53(6), pp.35-573. https://doi.org/10.1680/geot.2003.53.6.535
  19. Potts, D. M. and Zdravkovic, L. (2001), Finite element analysis in geotechnical engineering-Theory, London : Thomas Telford.
  20. Rahim, A. (1998), "The significance of non-associated plasticity", Crisp News, Issue No. 6, November.
  21. Tomlinson, M. J. (1994), Pile design and construction practice, 4th ed., E & FN Spon., pp.133-134.
  22. Yoo etc. 21 authors (2015), Design Specification and Commentary for Foundation Design, Korean Geotechnical Society, pp.309. (In Korean).