DOI QR코드

DOI QR Code

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles

사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동

  • Received : 2012.07.04
  • Accepted : 2012.07.16
  • Published : 2012.07.31

Abstract

Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

본 연구에서는 3차원 유한요소해석을 실시하여 사용 중인 단독말뚝 및 군말뚝의 측면에서 실시된 터널굴착에 의한 말뚝의 거동을 분석하였다. 수치해석에서는 터널굴착으로 유발된 말뚝-지반 경계면에서의 전단응력전이를 미끄러짐(slip)을 고려할 수 있는 접촉요소(interface element)를 이용하여 분석하였다. 본 연구는 말뚝-지반경계면에서의 전단응력, 말뚝의 축력 및 지반 및 말뚝의 변형에 대한 분석을 포함한다. 탄성이론에 근거한 기존의 연구는 말뚝의 거동에 영향을 미치는 주요인자들을 적절히 고려하지 못하여 말뚝의 거동을 명확하게 분석할 수 없는 것으로 나타났다. 터널굴착으로 유발된 말뚝-지반 사이에서의 전단응력전이로 인하여 말뚝인접 지반의 전단응력 및 말뚝의 축력분포가 크게 변하는 것으로 나타났는데, 터널 springline 상부에서는 하향의 마찰력이 발생하였으며, 그 하부에서는 상향의 저항력이 발현되어 말뚝에는 압축력이 발생하였다. 경계면에서의 전단응력 발현정도는 말뚝-지반의 상호거동에 가장 큰 영향을 미치는 것으로 분석되었다. 군말뚝의 축력분포에 대한 분석결과 단독말뚝에 비해 터널굴착의 영향을 덜 받는 것으로 나타났다. 터널굴착으로 유발된 말뚝의 침하와 관련된 말뚝의 겉보기 지지력 감소는 크지 않은 것으로 분석되었다.

Keywords

References

  1. 이용주 (2008), "기존 파일기초에 근접한 터널굴착으로 인한 전단변형률 형성에서의 경계선", 한국터널공학회논문집, 제10권, 제3호, pp. 283-293.
  2. 이용주, 황재욱 (2011), "터널굴착에 따른 모형말뚝의 기울기 정도 연구", 한국터널지하공간학회논문집, 제13권, 제4호, pp. 305-317.
  3. 최고니, 우승제, 유충식 (2011), "교량 직하부에 시공되는 터널에 의한 말뚝기초의 거동변화", 한국터널지하공간학회논문집, 제13권, 제1호, pp. 51-69.
  4. ABAQUS (2010), ABAQUS user's manual, Hibbit, Karlsson and Sorensen, Inc.
  5. Bolton, M.D. (1991), A guide to soil mechanics, 232 Queen Edith's Way, Cambridge, CB1 4NL, U.K
  6. Burland, J.B. (1973), "Shaft friction of piles in clay‒A simple fundamental approach", Ground Eng., Vol. 6, No. 3, pp. 30-42.
  7. Chen, L.T., Poulos, H.G., Loganathan, N. (1999), "Pile responses caused by tunnelling", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 3, pp. 207-215. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(207)
  8. Cheng, C.Y., Dasari, G.R., Leung, C.F., Chow, Y.K. (2003), "Finite element study of tunnel-soil-pile interaction", National University of Singapore Publication, Hulme Prize Winning Paper.
  9. Cheng, C.Y., Dasari, G.R., Chow, Y.K., Leung, C.F. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled model", Tunnelling and Underground Space Technology, Vol. 22, pp. 450-466. https://doi.org/10.1016/j.tust.2006.08.002
  10. Chiang, G.H. (2002), "The load transfer behavior of piles caused by nearby tunnelling", Master thesis, National Central University, Taiwan (in Chinese).
  11. Coutts, D.R., Wang, J. (2000), "Monitoring of reinforced concrete piles under lateral and vertical loads due to tunneling", Tunnels and Underground Structures, Balkema, London, pp. 541-546.
  12. Davisson, M.T. (1972), "High capacity piles", Proceedings of Lecture Series in Innovations in Foundation Construction, ASCE, Illinois Section, pp. 81-112.
  13. Huang, M., Zhang, C., Li, Z. (2009), "A simplified analysis method for the influence of tunnelling on grouped piles", Tunnelling and Underground Space Technology, Vol. 24, pp. 410-422. https://doi.org/10.1016/j.tust.2008.11.005
  14. Jacobsz, S.W. (2002), "The effects of tunnelling on piled foundations", PhD thesis, University of Cambridge.
  15. Jacobsz, S.W. (2003), "Tunnelling effects on piled foundations", Tunnels and Tunnelling international, June, pp. 28-31.
  16. Kaalberg, F.J., Teunissen, E.A.H., van Tol A.F., Bosch, J.W. (2005), "Dutch research on the impact of shield tunneling on pile foundations", Geotechnical Aspects of Underground Construction in Soft Ground, Proceedings of 5th International Conf. of TC 28 of the ISSMGE, pp. 123-133.
  17. Kitiyodom, P., Matsumoto, T., Kawaguchi, K. (2005), "A simplified analysis method for piled raft foundations subjected to ground movements induced by tunneling", Int. J. Numer. Anal. Meth. Geomech. Vol. 29, pp. 1485-1507. https://doi.org/10.1002/nag.469
  18. The Institution of Civil Engineers (ICE). (1996), "Sprayed concrete linings (NATM) for tunnels in soft ground", ICE Design and Practice Guides, Thomas Telford, London.
  19. Lee, C.J. (2001), "The influence of negative skin friction on piles and in pile groups", PhD thesis, Cambridge University.
  20. Lee, C.J., Chiang, K.H. (2007), "Responses of single piles to tunneling-induced soil movements in sandy ground", Canadian Geotechnical Journal, Vol. 44, pp. 1224-1241. https://doi.org/10.1139/T07-050
  21. Lee, G.T.K., Ng, C.W.W. (2005), "The effects of advancing open face tunneling on an existing loaded pile", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 2, pp. 193-201. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(193)
  22. Lee, S.W., Cheang, W.W.L., Swolfs, W.M., Brinkgreve, R.B.J. (2009), "Tunnelling near a building supported by end-bearing piles", Proc. of Hong Kong Tunnelling Conf, pp. 135-145.
  23. Lee, S.W., Choy, C.K.M., Cheang, W.W.L., Swolfs, W., Brinkgreve, R. (2010), "Modelling of tunnelling beneath a building supported by friction bored piles", The 17 th Southeast Asian Geotechnical Conference, pp. 215-218.
  24. Lee, Y.J. (2004), "Tunnelling adjacent to a row of loaded piles", PhD Thesis, University College London, University of London.
  25. Lee, Y.J., Bassett, R.H. (2007), "Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis", Tunnelling and underground space technology, 22, pp. 325-342. https://doi.org/10.1016/j.tust.2006.07.001
  26. Loganathan, N., Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movement in clays", J. Geotech. Geoenviron. Eng., ASCE, Vol. 124, No. 9, pp. 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
  27. Loganathan, N., Poulos, H.G., Stewart, D.P. (2000), "Centrifuge model testing of tunneling-induced ground and pile deformations", Geotechnique, Vol. 50, No. 3, pp. 283-294. https://doi.org/10.1680/geot.2000.50.3.283
  28. Loganathan, N., Poulos, H.G., Xu, K.J. (2001), "Ground and pile-group responses due to tunneling", Soils and Foundations, 41, pp. 57-67.
  29. Meguid, M.A., Mattar, J. (2009), "Investigation of tunnel-soil-pile interaction in cohesive soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 135, No. 7, pp. 973-979. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000004
  30. Mroueh, H., Shahrour, I. (2002), "Three-dimensional finite element analysis of the interaction between tunnelling and pile foundation", Int. J. Numer. Anal. Meth. Geomech. Vol. 26, pp. 217-230. https://doi.org/10.1002/nag.194
  31. Ong, O.W., Leung, C.F., Yong, K.Y., Chow, Y.K. (2006), "Pile responses due to tunneling in clay", Physical Modelling in Geotechnics, 6 th International Conference on Physical Modelling in Geotechnics, Taylor & Francis Group, London, pp. 1177-1182.
  32. Pang, C.H. (2006), "The effects of tunnel construction on nearby pile foundation", PhD thesis, The National University of Singapore.
  33. Poulos, H.G. (2011), "Comparisons between measured and computed responses of piles adjacent to tunnelling operations", Geotechnique Letters, 1-5 (www.geotechniqueletters.com)
  34. Pun, W.K., Ho, K.K.S. (1996), Analysis of triaxial tests on granitic saprolite performed at public works central laboratory, Discussion note DN 4/96, Geotechnical Engineering Office, Hong Kong Government of the Special Administrative region, Hong Kong.
  35. Selemetas, D. (2005), "The response of full-scale piles and piled structures to tunnelling", PhD thesis, University of Cambridge.
  36. Thomas, A. (2009), Sprayed concrete lined tunnels, Taylor & Francis, London and New York.
  37. Xu, K.J., Poulos, H.G. (2001), "3-D elastic analysis of vertical piles subjected to 'passive' loadings", Comput. Geotech. Vol. 28, pp. 349-375. https://doi.org/10.1016/S0266-352X(00)00024-0
  38. Yong, K.Y., Pang, C.H. (2004), "Geotechnical challenges of the mass rapid transit (MRT) system in singapore", In Malaysian Geotechnical Conference 2004, March 2004, Special Lecture.

Cited by

  1. A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel vol.17, pp.6, 2015, https://doi.org/10.9711/KTAJ.2015.17.6.637
  2. A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling vol.17, pp.2, 2015, https://doi.org/10.9711/KTAJ.2015.17.2.091