• Title/Summary/Keyword: semilinear differential equation

Search Result 20, Processing Time 0.025 seconds

EXISTENCE AND REGULARITY FOR SEMILINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.631-637
    • /
    • 2014
  • In this paper, we construct some results on the existence and regularity for solutions of neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the existence and regularity for solutions of the neutral system by using fractional power of operators and the local Lipschtiz continuity of nonlinear term without using many of the strong restrictions considering in the previous literature.

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS OF RETARDED TYPE

  • Dong, Qixiang;Li, Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.731-742
    • /
    • 2007
  • Let X be a Banach space, $A:D(A){\subset}X{\rightarrow}X$ the generator of a compact $C_0-semigroup\;S(t):X{\rightarrow}X,\;t{\geq}0$, D a locally closed subset in X, and $f:(a,b){\times}C([-q,0];X){\rightarrow}X$ a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order that D be a viable domain of the semi linear differential equation of retarded type $$u#(t)=Au(t)+f(t,u_t),\;t{\in}[t_0,\;t_0+T],{u_t}_0={\phi}{\in}C([-q,0];X)$$ is the tangency condition $$\limits_{h{\downarrow}0}^{lim\;inf\;h^{-1}d(S(h)v(0)+hf(t,v);D)=0}$$ for almost every $t{\in}(a,b)$ and every $v{\in}C([-q,0];X)\;with\;v(0){\in}D$.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

Exact Controllability for Fuzzy Differential Equations in Credibility Space

  • Lee, Bu Young;Youm, Hae Eun;Kim, Jeong Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.145-153
    • /
    • 2014
  • With reasonable control selections on the space of functions, various application models can take the shape of a well-defined control system on mathematics. In the credibility space, controlability management of fuzzy differential equation is as much important issue as stability. This paper addresses exact controllability for fuzzy differential equations in the credibility space in the perspective of Liu process. This is an extension of the controllability results of Park et al. (Controllability for the semilinear fuzzy integro-differential equations with nonlocal conditions) to fuzzy differential equations driven by Liu process.

NONLINEAR DIFFERENTIAL INCLUSIONS OF SEMIMONOTONE AND CONDENSING TYPE IN HILBERT SPACES

  • Abedi, Hossein;Jahanipur, Ruhollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.421-438
    • /
    • 2015
  • In this paper, we study the existence of classical and generalized solutions for nonlinear differential inclusions $x^{\prime}(t){\in}F(t,x(t))$ in Hilbert spaces in which the multifunction F on the right-hand side is hemicontinuous and satisfies the semimonotone condition or is condensing. Our existence results are obtained via the selection and fixed point methods by reducing the problem to an ordinary differential equation. We first prove the existence theorem in finite dimensional spaces and then we generalize the results to the infinite dimensional separable Hilbert spaces. Then we apply the results to prove the existence of the mild solution for semilinear evolution inclusions. At last, we give an example to illustrate the results obtained in the paper.

EXISTENCE OF A MULTIVORTEX SOLUTION FOR ${SU(N)_g}{\times}U(1)_l$ CHERN-SIMONS MODEL IN ${R^2}/{Z^2}$

  • Yoon, Jai-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.305-309
    • /
    • 1997
  • In this paper we prove the existence of a special type of multivortex solutions of $SU (N)_g \times U(1)_l$ Chern-Simons model. More specifically we prove existence of solutions of the self-duality equations for $(\Phi(x), j =1, \cdots, N$ has the same zeroes. In this case we find that the equation can be reduced to the single semilinear elliptic partial differential equations studied by Caffarelli and Yang.

  • PDF

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.