References
- M. Adimy, H. Bouzabir, and K. Ezzinbi, Existence for a class of partial functional diFFerential equations with infinite delay, Nonlinear Analysis 46 (2001), no. 1, 91-112 https://doi.org/10.1016/S0362-546X(99)00447-2
- O. Arino and E. Sanchez, Linear theory of abstract functional differential equations of retarded type, J. Math. Anal. Appl. 191 (1995), no. 3, 547-571 https://doi.org/10.1006/jmaa.1995.1148
- H. Beliochi and J. M. Lasry, Integrandes normales et mesures parametrees en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184
- H. Brezis, On a charaterization of flow-invariant sets, Commun. Pure Appl. Math. 23 (1970), 261-263 https://doi.org/10.1002/cpa.3160230211
- O. Carja and M. D. P. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Differential Equations 165 (2000), no. 2, 328-346 https://doi.org/10.1006/jdeq.2000.3807
- O. Carja and I. I. Vrabie, Viable Domain for Differential Equations Governed by Caratheodory Perturbations of Nonlinear m-Accretive Operators, Lecture Notes in Pure and Appl. Math., Vol. 225, 109-130
- M. G. Crandall, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer. Math. Soc. 36 (1972), 151-155 https://doi.org/10.2307/2039051
- J. K. Hale, Functional Differential Equations, Appl. Math. Sci. Vol. 3. Springer-Verlag New York, New York-Heidelberg, 1971. viii+238 pp
- P. Hartman, On invariant sets and on a theorem of Wazewski, Proc. Amer. Math. Soc. 32 (1972), no. 7, 511-520
- F. Iacob and N. H. Pavel, Invariant sets for a class of perturbed differential equations of retarded type, Isreal J. Math. 28 (1977), no. 3, 254-264 https://doi.org/10.1007/BF02759812
- A. G. Kartsatos and K. Y. Shin, Solvability of functional evolutions via compactness methads in general Banach spaces, Nonlinear Anal. 21 (1993), no. 7, 517-535 https://doi.org/10.1016/0362-546X(93)90008-G
- A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), no. 3, 197-203 https://doi.org/10.4064/fm-138-3-197-203
- J. Liang and T. J. Xiao, Solvability of the Cauchy problem for infinite delay equations, Nonlinear Anal. 58 (2004), no. 3-4, 271-297 https://doi.org/10.1016/j.na.2004.05.005
- R. H. Martin. Jr., Differential equation on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414 https://doi.org/10.2307/1996511
- M. Nagumo, Uber die Lage Integralkurven gewonlicher Differential gleichungen, Proc. Phys. Math. Soc. Japan (3) 24 (1942), 551-559
- N. H. Pavel, Invariant sets for a class of semilinear equations of evolutiom, Nonlinear Anal. 1 (1977), 187-196 https://doi.org/10.1016/0362-546X(77)90009-8
- N. H. Pavel, Differential equations, flow-invariance and applications, Research notes in mathematics 113, Pitman Publishing limited, 1984
- N. H. Pavel and D. Motreanu, Tangency, Flow-Invariance for Differential Equations, and Optimization Problems, Dekker New York/Basel, 1999
- A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equa- tions, Springer-Verlag, New York, 1983
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418 https://doi.org/10.2307/1997265
- C. C. Travis and G. F. Webb, Existence, stability and compactness in the ff-norm for partial functional dif- ferential equations, Trans. Amer. Math. Soc. 240 (1978), 129-143 https://doi.org/10.2307/1998809
- C. Ursescu, Caratheodory solution of ordinary differential equations on locally closed sets infinite dimensional spaces, Math. Japan 31 (1986), no. 3, 483-491
- G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12 https://doi.org/10.1016/0022-247X(74)90277-7
- G. F. Webb, Asymptotic stability for abstract functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230 https://doi.org/10.2307/2040790
Cited by
- Viability for Semilinear Differential Equations with Infinite Delay vol.4, pp.4, 2016, https://doi.org/10.3390/math4040064