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APPROXIMATE CONTROLLABILITY FOR NONLINEAR

FUNCTIONAL DIFFERENTIAL EQUATIONS†

JIN-MUN JEONG∗ AND HYUN-HEE RHO

Abstract. In this paper, we study the control problems governed by the
semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz
continuity condition of the nonlinear term, we can obtain the sufficient con-
ditions for the approximate controllability of nonlinear functional equations
with nonlinear monotone hemicontinuous and coercive operator. The exis-
tence, uniqueness and a variation of solutions of the system are also given.
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1. Introduction

Let H and V be real separable Hilbert spaces such that V is a dense subspace
of H. We are interested in the following nonlinear functional control system on
H {

x ′(t) +Ax(t) = f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0,
(1.1)

where the nonlinear mapping f is Lipschitz continuous from R × V into H.
Here, the operator A is given as a single valued, hemicontinuous and monotone
operator from V to V ∗. Here, V ∗ stands for the dual space of V . The controller
B is a linear bounded operator from a Banach space L2(0, T ;U) to L2(0, T ;H)
for any T > 0, where U is a Banach space of control variables.

When the right hand side of (1.1) belongs to L2(0, T ;V ∗), it is well known
as the quasi-autonomous differential equation(see Theorem 2.6 of Chapter III in
[1]). In [2], Jeong, et al. have established the existence and the norm estimate
of a solution of (1.1) on L2(0, T ;V ) ∩ W 1,2(0, T ;V ∗) by using the contraction
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mapping principle, which is also applicable to optimal control problem. The
control systems governed by a class of nonlinear evolution equations were devel-
oped in many references [3, 4, 5, 6, 7]. As for the semilinear control system with
the linear operator A generated C0-semigroup, Naito [5] proved the approximate
controllability under the range conditions of the controller B.

The main objective of this paper is to consider the approximately controllable
for (1.1) with the nonlinear principal operator A under a stronger assumption
that {y : y(t) = Bu(t), u ∈ L2(0, T ;U)} is dense subspace of L2(0, T,H),
which is reasonable and widely used in case of the nonlinear system. Generally,
we can give the sufficient conditions for the approximate controllability of nonlin-
ear functional equations with nonlinear monotone hemicontinuous and coercive
operator.

In [8, 9], they studied the control problems of the semilinear equations by
assuming a Lipschitz continuity of f and a range condition of the controller B
with an inequality constraint. In this paper we no longer require the compactness
of a solution mapping, and the inequality constraint on the range condition of the
controller B, but instead we need the regularity and a variation of solutions of the
given equations. For the basis of our study we construct the fundamental solution
and establish variations of constant formula of solutions for the semilinear system
by using those of the corresponding the linear system.

2. Solutions of nonlinear Systems

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norm on V , H and V ∗ will be
denoted by || · ||, | · | and || · ||∗, respectively. The duality pairing between the
element v1 of V ∗ and the element v2 of V is denoted by (v1, v2), which is the
ordinary inner product in H if v1, v2 ∈ H. For the sake of simplicity, we may
consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

In terms of the intermediate theory, we may assume that

(V, V ∗)1/2,2 = H

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗.
We note that a nonlinear operator A is said to be hemicontinuous on V if

w − lim
t→0

A(x+ ty) = Ax

for every x, y ∈ V where ”w − lim” indicates the weak convergence on V .

We will need the following hypotheses on the data of problem (1.1).

(A) Let A : V −→ V ∗ be given a single valued, monotone operator and
hemicontinuous from V to V ∗ such that

A(0) = 0,

(Au−Av, u− v) ≥ ω1||u− v||2 − ω2|u− v|2,
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|Au| ≤ ω3(||u||+ 1)

for every u, v ∈ V where ω2 ∈ R and ω1, ω3 are some positive constants.
(F) Let f : V → H be Lipschitz continuous, i.e., there exists a constant

L > 0 such that

|f(t, x1)− f(t, x2)| ≤ L||x− y||, ∀x, y ∈ V.

Here, we note that if 0 6= A(0) we need the following assumption

(Au, u) ≥ ω1||u||2 − ω2|u|2

for every u ∈ V . It is also known that A is maximal monotone and R(A) = V ∗,
where R(A) denotes the range of A.

We are interested in the following nonlinear functional control system on H:
{

x ′ +Ax(t) = f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0,

Proposition 2.1. Let the assumption (F) be satisfied. Assume that Bu ∈
L2(0, T ;V ∗) and x0 ∈ H. Then, the system (1.1) has a unique solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H) ∩W 1,2(0, T ;V ∗)

and there exists a constant C1 depending on T such that

||x||L2∩C∩W 1,2 ≤ C1(1 + |x0|+ ||Bu||L2(0,T ;V ∗)).

The proof of Proposition 2.1 is from Jeong et al. [2; Theorem 2.1]. They used
the monotonicity of A in order to prove the regularity for solutions of (1.1), so
we obtain the following a perturbation result by a monotone operator

Corollary 2.1. Let the assumption (F) be satisfied. Let the operator D be
a monotone set in H × H. Then for every k ∈ L2(0, T ;V ∗) and x0 ∈ H, the
Cauchy problem

x ′(t) = (A+D)x(t) + f(t, x(t)) + k(t),

x(0) = x0

has a unique solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

and there exists a constant C2 depending on T such that

||x||L2∩C ≤ C2(1 + |x0|+ ||k||L2(0,T ;V ∗)).
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3. Approximate controllability

In what follows we assume that the embedding V ⊂ H is compact. For
h ∈ L2(0, T ;V ∗) and let xh be the solution of the following equation with B = I:

{
x ′(t) +Ax(t) = f(t, x(t)) + h(t), 0 < t ≤ T0,

x(0) = x0.
(3.1)

We assume that a nonlinear single valued mapping f is from [0,∞)×H into
H satisfying a Lipschitz continuity condition (F). Moreover, let us assume that
f is uniformly bounded: there exists a constant M such that

|f(t, x)| ≤ M,

for all x ∈ V .

The following Lemma is from Brézis [10, Lemma A.5].

Lemma 3.1. Let m ∈ L1(0, T ;R) satisfying m(t) ≥ 0 for all t ∈ (0, T ) and
a ≥ 0 be a constant. Let b be a continuous function on [0, T ] ⊂ R satisfying the
following inequality:

1

2
b2(t) ≤ 1

2
a2 +

∫ t

0

m(s)b(s)ds, t ∈ [0, T ].

Then,

|b(t)| ≤ a+

∫ t

0

m(s)ds, t ∈ [0, T ].

Lemma 3.2. Let xh be the solution of (3.1) corresponding to h in L2(0, T ;H).
Then we have that

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds ≤ e2ω2t

2
|x0|2 (3.2)

+

∫ t

0

e2ω2(t−s)|xh(s)|(M + |h(s)|)ds.

Proof. In order to prove (3.2), taking scalar product on both sides of (3.1) by
x(t), we obtain

1

2

d

dt
|xh(t)|2 + ω1||xh(t)||2 ≤ ω2|xh(t)|2 + |xh(s)|(M + |h(s)|).

Integrating the above equation on [0, t], we get

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds ≤ 1

2
|x0|2 (3.3)

+ ω2

∫ t

0

|xh(s)|2ds+
∫ t

0

|xh(s)|(M + |h(s)|)ds.
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Since

d

dt
{e−2ω2t

∫ t

0

|xh(s)|2ds} (3.4)

= 2e−2ω2t{1
2
|xh(t)|2 − ω2

∫ t

0

|xh(s)|2ds}

≤ 2e−2ω2t{1
2
|x0|2 +

∫ t

0

|xh(s)|(M + |h(s)|)ds},

integrating (3.4) over (0, t) we have

e−2ω2t

∫ t

0

|xh(s)|2ds ≤ 2

∫ t

0

e−2ω2τ

∫ τ

0

|xh(s)|(M + |h(s)|)dsdτ

+
1− e−2ω2t

2ω2
|x0|2

= 2

∫ t

0

∫ t

s

e−2ω2τdτ |xh(s)|(M + |h(s)|)ds+ 1− e−2ω2t

2ω2
|x0|2

= 2

∫ t

0

e−2ω2s − e−2ω2t

2ω2
|xh(s)|(M + |h(s)|)ds+ 1− e−2ω2t

2ω2
|x0|2

=
1

ω2

∫ t

0

(e−2ω2s − e−2ω2t)|xh(s)|(M + |h(s)|)ds+ 1− e−2ω2t

2ω2
|x0|2,

and hence,

ω2

∫ t

0

|x(s)|2ds ≤
∫ t

0

(e2ω2(t−s) − 1)|xh(s)|(M + |h(s)|)ds

+
e2ω2t − 1

2
|x0|2.

From (3.3) it follows that

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds ≤ e2ω2t

2
|x0|2

+

∫ t

0

e2ω2(t−s)|xh(s)|(M + |h(s)|)ds.

¤

Lemma 3.3. If (x0, h) ∈ H × L2(0, T ;V ∗), then x ∈ L2(0, T ;V ) ∩ C([0, T ];H)
and the mapping

H × L2(0, T ;V ∗) 3 (x0, h) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous.

Proof. By virtue of Proposition 2.1 for any (x0, h) ∈ H × L2(0, T ;V ∗), the
solution x of (3.1) belongs to L2(0, T ;V ) ∩ C([0, T ];H). Let (x0i, hi) ∈ H ×
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L2(0, T ;V ∗) and xi be the solution of (3.1) with (x0i, hi) in place of (x0, h) for
i = 1, 2. Multiplying on (3.1) by x1(t)− x2(t), we have

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2

≤ω2|x1(t)− x2(t)|2 + L|x1(t)− x2(t)|2
+ ||x1(t)− x2(t)|| ||h1(t)− h2(t)||∗.

By the similar process of the proof of Lemma 3.2 it holds

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0

||x1(s)− x2(s)||2ds ≤ e2ω2t

2
|x01 − x02|2 (3.5)

+

∫ t

0

Le2ω2(t−s)|x1(s)− x2(s)|2ds

+

∫ t

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds.

We can choose a constant c > 0 such that

ω1 − e2ω2T
c

2
> 0

and, hence
∫ T

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds

≤ e2ω2T

∫ T

0

{ c
2
||x1(s)− x2(s)||2 + 1

2c
||h1(s)− h2(s)||2∗}ds.

We now apply Gronwall’s inequality to (3.5) and obtain that there exists a
constant C > 0 such that

||x1 − x2||L2(0,T,V )∩C([0,T ];H) ≤ C(|x01 − x02|+ ||h1 − h2||L2(0,T ;V ∗)). (3.6)

Suppose (x0n, hn) → (x0, h) inH×L2(0, T ;V ∗), and let xn and x be the solutions
(3.1) with (x0n, hn) and (x0, h), respectively. Then, by virtue of (3.6), we see
that xn → x in L2(0, T, V ) ∩ C([0, T ];H). ¤

We define the solution mapping S from L2(0, T ;V ∗) to L2(0, T ;V ) by

(Sh)(t) = xh(t), h ∈ L2(0, T ;V ∗).

Let A and F be the Nemitsky operators corresponding to the maps A and f ,
which are defined by A(x)(·) = Ax(·) and F(h)(·) = f(·, xh), respectively.

Then

xh(t) =

∫ t

0

((I + F −AS)h)(s)ds,

and with the aid of Proposition 2.1

||Sh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||xh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) (3.7)

≤ C2(|x0|+ ||h||L2(0,T ;V ∗) + 1).
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Hence if h is bounded in L2(0, T ;V ∗), then so is xh in L2(0, T ;V )∩W 1,2(0, T ;V ∗).
Since V is compactly embedded inH by assumption, the embedding L2(0, T ;V )∩
W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of Theorem 2 of Aubin [11].
Hence, since the embedding L2(0, T ;H) ⊂ L2(0, T ;V ∗) is continuous, the map-
ping h 7→ Sh = xh is compact from L2(0, T ;V ∗) to itself. Therefore, F is a
compact mapping from L2(0, T ;V ∗) to itself and so is AS. The solution of (1.1)
is denoted by x(T ; f, u) associated with the nonlinear term f and the control u
at time T .

Definition 3.1. The system (1.1) is said to be approximately controllable at
time T if Cl{x(T ; f, u) : u ∈ L2(0, T ;U)} = H where Cl denotes the closure in
H.

We assume

(B) Cl{y : y(t) = Bu(t), a.e., u ∈ L2(0, T ;U)} = L2(0, T ;H) where Cl
denotes the closure in L2(0, T ;H).

Theorem 3.1. Let the assumptions (B) and (F) be satisfied. Then we have

Cl{(l − (AS −F))h : h ∈ L2(0, T ;H)} = L2(0, T ;H). (3.8)

Thus the system (1.1) is approximately controllable at time T .

Proof. For the sake of simplicity we assume that ω2 > 0. Let us fix T0 > 0 so
that

ω
−1/2
1 ω3{e

2ω2T0 − 1

2ω2
|x0|+ e4ω2T0 − 1

8ω2
}1/2 < 1. (3.9)

Let Ur be the ball with radius r in L2(0, T0;H) and z ∈ Ur. Put

C(t, |x0|) ={e
2ω2t

2
|x0|2 + 2M |x0|e2ω2t

1− e−ω2t

ω2
}1/2

+Mt1/2(
e4ω2t − 1

2ω2
)1/2.

Take a constant d > 0 such that

{r +M
√
T 0 + ω3(ω

−1/2
1 (C(T0, |x0|)1/2 + 1)}(1−N)−1 < d, (3.10)

with the constant

N = (
e2ω2T0 − 1

2ω2
|x0|+ e4ω2T0 − 1

8ω2
)1/2.

From (3.2) and Lemma 3.1 it follows that

|xh(t)| ≤ eω2t|x0|+
∫ t

0

e2ω2(t−s)(M + |h(s)|)ds.

Thus,

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds
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≤ e2ω2t

2
|x0|2 +

∫ t

0

e2ω2(t−s)|xh(s)|(M + |h(s)|)ds

≤ e2ω2t

2
|x0|2

+

∫ t

0

e2ω2(t−s){eω2s|x0|+
∫ s

0

e2ω2(s−τ)|(2M + |h(τ)|)dτ}(M + |h(s)|)ds

=
e2ω2t

2
|x0|2 + e2ω2t|x0|

∫ t

0

e−ω2s(M + |h(s)|)ds

+ e4ω2t

∫ t

0

e−2ω2s{
∫ s

0

e−2ω2τ (M + |h(τ)|)dτ}(M + |h(s)|)ds

=
e2ω2t

2
|x0|2 +M |x0|e2ω2t

1− e−ω2t

ω2
+ e2ω2t|x0|

∫ t

0

e−ω2s|h(s)|ds

+ e4ω2t

∫ t

0

1

2

d

ds
{
∫ s

0

e−2ω2τ (M + |h(τ)|)dτ}2ds

=
e2ω2t

2
|x0|2 +M |x0|e2ω2t

1− e−ω2t

ω2
+

e2ω2t − 1

2ω2
|x0|

∫ t

0

|h(s)|2ds

+
e4ω2t − 1

8ω2

∫ t

0

(M + |h(τ)|)2ds,

that is,

||Sh||L2(0,T0;V ) = ||xh||L2(0,T0;V ) (3.11)

≤ ω
−1/2
1 (C(T0, |x0|)1/2 +N ||h||L2(0,T0;H)).

Let us consider the equation

z = h− λ(AS −F)h, 0 ≤ λ ≤ 1. (3.12)

Let h be the solution of (3.12). Then, for the element z ∈ Ur ⊂ Ud, from (3.10),
(3.11) it follows that

||h||L2(0,T0;H) ≤ ||z||+ ||ASh||+ ||Fh||
≤ r +M

√
T 0 + ω3(||Sh||+ 1)

≤ r +M
√
T 0

+ ω3{ω−1/2
1 (C(T0, |x0|)1/2 +N ||h||L2(0,T0;H)) + 1}

and hence,

||h|| ≤ {r +M
√
T 0 + ω3(ω

−1/2
1 (C(T0, |x0|)1/2 + 1)}(1−N)−1

< d,

it follows that h /∈ ∂Ud where ∂Ud stands for the boundary of Ud. Thus the homo-
topy property of topological degree theory there exists h ∈ L2(0, T0;H) such that
the equation (3.12) holds. Let y ∈ H. We can choose g ∈ W 1,2(0, T0;H) such
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that g(0) = 0 and g(T0) = y and h ∈ L2(0, T0;H) such that g
′
= (I−(AS−F))h.

Since the assumption (B), there exists a sequence {un} ∈ L2(0, T0;U) such that
Bun 7→ h in L2(0, T ;H). Then by Lemma 3.3 we have that x(·; g, un) 7→ xh in
L2(0, T0;V ) ∩ C([0, T0];H). Therefore, x(T0; g, un) 7→ y. We conclude that the
system (1.1) is approximately controllable at time T0. Since the condition (3.9)
is independent of initial values, we can solve the equation in [T0, 2T0] with the
initial value x(T0). By repeating this process, the approximate controllablility
for (1.1) can be extended the interval [0, nT0] for the natural number n, i.e., for
the initial x(nT0) in the interval [nT0, (n+ 1)T0]. ¤
Remark 3.1. If our constants condition in (2.1), (2.2) contains the following
inequality: ω1 > 1 or ω3 < 1, then we can find that the approximate control-
lablility for (1.1) guarantees if h ∈ L2(0, T ;V ∗) by using a routine computation.
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