• Title/Summary/Keyword: selectivity ($H_2/N_2$)

Search Result 207, Processing Time 0.024 seconds

Separation of $H_2$ and $N_2$ by PDMS-NaYZeolite Composite Membranes (PDMS-NaYZeolite 막에 의한 수소-질소 분리에 관한 연구)

  • Ha, Jung-Im;Kang, Tae-Beom
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The PDMS-NaYzeolite composite membranes were prepared by adding 1~40 wt% NaYzeolite to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, and SEM. The permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of NaYzeolite contents. The permeability and selectivity ($H_2/N_2$) of PDMS membrane increased as the gas permeation pressure increased. The permeability of the PDMS-NaYzeolite composite membranes increased when 1~10 wt% NaYzeolite was added, and then decreased at higher wt% as NaYzeolite content increased. The selectivity ($H_2/_2$) of PDMS-NaYzeolite composite membranes decreased when 1~2 wt% NaYzeolite was added, and then increased as NaYzeolite content increased. As the $H_2$ permeability increased, the selectivity ($H_2/N_2$) of PDMS-NaYzeolite composite membranes decreased at 0~2 wt% and 10~40 wt% NaYzeolite contents, increased at 2~10 wt% NaYzeolite content.

Separation of Gases ($H_2$, $N_2$, $CO_2$, $CH_4$) by PEBAX-NaY Zeolite Composite Membranes (PEBAX-NaY zeolite 복합막에 의한 기체($H_2$, $N_2$, $CO_2$, $CH_4$) 분리에 관한 연구)

  • Kim, Seul Gi;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • PEBAX[poly(ether-block-amide)]-NaY zeolite composite membrane was studied on the permeability of penetrant $H_2$, $N_2$, $CO_2$ and $CH_4$ and the selectivity. When the NaY zeolite contents of PEBAX-NaY zeolite membranes were increased, the permeability of $H_2$ was increased, but the permeability of $N_2$, $CH_4$ and $CO_2$ was decreased. By the addition of NaY zeolite into PEBAX, the gas selectivity for $H_2$, $N_2$ and $CO_2$ was decreased except the increase of selectivity of $H_2/N_2$. $CO_2/N_2$, $H_2/CO_2$ and Gas/$CH_4$. The highest selectivity among these gases was from $CO_2$. In particular, the gas selectivity for $CO_2$ was the greatest with a value of 12~156.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Hydrocarbon Gas Permeation Characteristics of PTMSP/LDH Composite Membranes (PTMSP/LDH 복합막의 탄화수소 기체투과 특성)

  • Jeong, Yeon-Eim;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.423-430
    • /
    • 2014
  • PTMSP/LDH composite membranes were prepared by adding 0, 1, 3, and 5 wt% LDH contents to PTMSP. The gas permeability and selectivity for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ were investigated as a function of LDH content. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the gas permeability for $H_2$ and $N_2$ gradually decreased, while $n-C_4H_{10}$ permeability rapidly increased. The gas permeability for $CH_4$ and $C_3H_8$ was found to decrease for the membranes with LDH content range of 0~3 wt%, however increase in the range of 3~5 wt%. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the selectivity of membranes gradually increased for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ over $H_2$, $N_2$. However the selectivity for $C_3H_8$ and $n-C_4H_{10}$ over $CH_4$ increased in the range of LDH content 0~3 wt% but decreased in the range of 3~5 wt%. The $CH_4$ and $n-C_4H_{10}$ selectivity over $H_2$ and $N_2$ increased as $CH_4$ and $n-C_4H_{10}$ permeability increased. The $n-C_4H_{10}$ selectivity over $CH_4$ increased with increasing $n-C_4H_{10}$ permeability up to 182,000 barrer and decreased above 182,000 barrer of $n-C_4H_{10}$ permeability. The $C_3H_8$ selectivity over $H_2$ and $N_2$ was found to decrease as the $C_3H_8$ permeability increased from 46,000 to 50,000 barrer, but to increase with increasing permeability from 50,000 to 52,300 barrer and decrease again with increasing permeability from 52,300 to 60,000 barrer. The $C_3H_8$ selectivity over $CH_4$ was found to decrease with increasing $C_3H_8$ permeability up to 52,300 barrer but increase above 52,300 barrer.

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO (GO를 함유한 PEBAX 복합막의 성질과 기체투과도)

  • Lee, Seul Ki;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.

Cobalt(III) Complexes of 1,3-Diaminopropane-N,N'-di-α-(β-methyl)-pentanoic Acid

  • 함혜영;박영준;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.827-831
    • /
    • 1997
  • A novel ONNO-type tetradentate ligand, 1,3-diaminopropane-N,N'-di-α-(β-methyl)-pentanoic acid (H2apmp) and its cobalt(Ⅲ) complexes, [Co(apmp)X2]n+, (X=Cl-, NO2-, H2O, X2=CO32-, en, L-phenylalanine) have been synthesized. During the preparation of the dichloro cobalt(Ⅲ) complex of apmp, [Co(apmp)Cl2]-, the ligand has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only the uns-cis isomer and, during the substitution reaction between L-phenylalanine and [Co(apmp)Cl2]-, the L-phenylalanine has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only an uns-cis-meridional isomer. It is of interest that this is a rare case of the [Co(ONNO ligand)X2]n+-type complex preparations, which gives only an uns-cis isomer with geometric selectivity.

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes (PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구)

  • Ha, Jung Im;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.418-424
    • /
    • 2013
  • The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

Preparation and Characterization of PTMSP/PDMS-zeolite Composite Membranes for Gas Separation (기체분리를 위한 PTMSP/PDMS-zeolite 복합막의 제조 및 특성)

  • Kim, Na-Eun;Kang, Tae-Beom;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.342-351
    • /
    • 2012
  • In this study, PTMSP[poly(1-trimethylsilyl-1-propyne)]/PDMS[poly(dimethylsioxane)]-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes were made to incorporate zeolite into PTMSP/PDMS graft copolymer in order to improve the selectivity and thermal stability, the drop of permeability by physical aging effect during long period of time for the PTMSP membrane. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, $^1H$-NMR, TGA, SEM, and GPC have been utilized. The gas permeability and selectivity properties of $H_2$ and $N_2$ were evaluated. The permeability of the PTMSP/PDMS-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes than PTMSP/PDMS graft copolymer membrane increased, increased as zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as zeolite content increased. PTMSP/PDMS-NaA zeolite composite membrane showed better permeability and separation factor than PTMSP/PDMS-NaY zeolite composite membrane.

Separation of H2 and N2 Gases by PTMSP-NaA Zeolite Composite Membranes (PTMSP-NaA Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Kim, Ok-Su;Yun, Seok Il
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • PTMSP-NaA zeolite composite membranes were prepared by adding 0~50 wt% NaA zeolite to PTMSP. The membranes were characterized by FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM. The permeabilities of $H_2$ and $N_2$ gases through PTMSP-NaA zeolite composite membranes was studied as a function of NaA zeolite contents. According to TGA measurements, when zeolite was inserted into the polymer, weight loss temperature and weight loss wt% of PTMSP-NaA zeolite composite membranes were decreased. Based on SEM observation, NaA zeolite was dispersed in the PTMSP-NaA zeolite composite membrane with the size $2{\sim}5{\mu}m$. The permeability of PTMSP-NaA zeolite composite membranes increased added as NaA zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as NaA zeolite content increased. PTMSP-NaA zeolite composite membrane showed better permeability and selectivity ($H_2/N_2$) of $H_2$ and $N_2$ than PTMSP-NaY zeolite composite membrane.

Gas Permeation Characteristics of PTMSP-Silica Composite Membranes Using Sol-Gel Process (졸-겔법에 의한 PTMSP-Silica 복합막의 기체 투과 특성)

  • Yoon, Sung-Hyon;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PTMSP-silica composite membranes were prepared by addition of 0, 15, 20, and 30 wt% TEOS (tetraethoxysilane), TMOS (tetramethoxysilane), MTMOS (methyltrimethoxysilane), and PTMOS (phenyltrimethoxysilane) contents to PTMSP using sol-gel process. The gas permeability of the composite membranes for $H_2$, $N_2$ and ideal selectivity for $H_2$ over $N_2$ were investigated as a function of alkoxysilane content. The permeabilities for $H_2$ and $N_2$ increased in the range of alkoxysilane contents 0~20 wt%, however decrease the range of 20~30 wt%. The ideal selectivities for $H_2$ over $N_2$ decreased in the range of TEOS and PTMOS contents 0~15 wt%, but increased in the range of 15~30 wt%. When compared to the upper bound of Robeson, PTMSP-silica composite membranes with TEOS content of 30 wt%, MTMOS content of 20 wt% and PTMOS content of 30 wt% turned out to be a simultaneous improvement in ideal selectivity and permeability.