Separation of $H_2$ and $N_2$ by PDMS-NaYZeolite Composite Membranes

PDMS-NaYZeolite 막에 의한 수소-질소 분리에 관한 연구

  • Ha, Jung-Im (Department of Chemistry, Sang Myung University) ;
  • Kang, Tae-Beom (Department of Chemistry, Sang Myung University)
  • Received : 2010.02.13
  • Accepted : 2010.03.15
  • Published : 2010.03.30

Abstract

The PDMS-NaYzeolite composite membranes were prepared by adding 1~40 wt% NaYzeolite to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, and SEM. The permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of NaYzeolite contents. The permeability and selectivity ($H_2/N_2$) of PDMS membrane increased as the gas permeation pressure increased. The permeability of the PDMS-NaYzeolite composite membranes increased when 1~10 wt% NaYzeolite was added, and then decreased at higher wt% as NaYzeolite content increased. The selectivity ($H_2/_2$) of PDMS-NaYzeolite composite membranes decreased when 1~2 wt% NaYzeolite was added, and then increased as NaYzeolite content increased. As the $H_2$ permeability increased, the selectivity ($H_2/N_2$) of PDMS-NaYzeolite composite membranes decreased at 0~2 wt% and 10~40 wt% NaYzeolite contents, increased at 2~10 wt% NaYzeolite content.

소수성 고무상 고분자 PDMS에 NaYzeolite 함량을 1~40 wt%로 달리하여 PDMS-NaYzeolite 복합막을 제조하였다. 그리고 FT-IR, $^1H$-NMR, SEM에 의해서 막의 특성을 조사하였다. 복합막의 NaYzeolite 함량 변화에 따라 $H_2$$N_2$의 투과도와 선택도를 조사하였다. PDMS 단일막은 기체투과 압력이 증가하면 $H_2$$N_2$의 투과도와 선택도($H_2/N_2$)가 증가하였다. PDMS-NaYzeolite 복합막의 $H_2$$N_2$ 투과도는 NaYzeolite 함량 0~10 wt%까지는 증가하고 그 이후부터는 감소하였고, 선택도($H_2/N_2$)는 0~2 wt%까지는 감소하고 그 이상에서는 증가하였다. PDMS-NaYzeolite 복합막은 $H_2$ 투과도가 증가하면 선택도($H_2/N_2$)는 0~2 wt%와 10~40 wt% NaYzeolite 함량 범위에서는 감소하고, 2~10 wt% NaYzeolite 함량 범위에서는 증가하였다.

Keywords

References

  1. P. Winberg, K. Desitter, C. Dotremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, "Free volume and interstitial mesopores in silica filled poly( I-trimethylsilyl-I-propyne)nanocomposites", Macromolecules, 38, 3776 (2005). https://doi.org/10.1021/ma047369j
  2. D. Gomes, S. P. Nunes, and K. V. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246, 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  3. G. Philipp and H. Schmidt, "New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process", J. Non-Crystalline Solids, 63, 283 (1984). https://doi.org/10.1016/0022-3093(84)90407-1
  4. Y. Mizutani and S. Nago, "Microporous Polypropylene films containing ultrafime silica particles", J. Appl. Polym. Sci., 72, 1489 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990613)72:11<1489::AID-APP10>3.0.CO;2-U
  5. M. Adachi, Y. Suzuki, N. Kashiwagi, T. Isobe, and M. Senna, "Preparation and properties of polymer micropheres dispersed in a silica gel film", Colloids Surfaces A: Physiochem. Eng. Aspects, 153, 617 (1998).
  6. M. M. Collinson, "Recent trends in analytical applications of organically modified silicate materials", TrAC, 21, 30 (2002).
  7. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly( amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  8. H. B. Park, C. H. Jung, Y. K. Kim, S. Y. Nam, S. Y. Lee, and Y. M. Lee, "Pyrolytic carbon membranes containing silica derived from poly(imde siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases", J. Membr. Sci., 235, 87 (2004).
  9. S. H. Zhong, C. F. Li, Q. Li, and X. F. Xioa, "Supported mesoporous $SiO_2$ membrane synthesized by sol-gel template technology", Separation and Purification, 32, 17 (2003). https://doi.org/10.1016/S1383-5866(03)00034-0
  10. G. H. Hsiue, W. J. Kuo, Y. P. Huang, and R. J. Jeng, "Microstructrural and morphological characteristics of PS-$SiO_2$ nanocomposites", Polymer, 41, 2813 (2000). https://doi.org/10.1016/S0032-3861(99)00478-4
  11. S. H. Zhong, C. F. Li, and X. F. Xiao, "Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr-mullite supports", J. Membr. Sci., 199, 53 (2002). https://doi.org/10.1016/S0376-7388(01)00676-7
  12. S. Ulutan and T. Nakagawa, "Separability of ethanol and water mixtures through PTMSP-silica membranes in pervaporation", J. Membr. Sci., 143, 275 (1998). https://doi.org/10.1016/S0376-7388(98)00022-2
  13. K. D'Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly( I-trimethylsily-I-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  14. J. Comyn and F. de Buyl, "Mobility of water and alcohols in a silica reinforced siloxane network", Euro. Polym. J., 37, 2385 (2001). https://doi.org/10.1016/S0014-3057(01)00156-2
  15. M. Jia, K. V. Peinemann, and R. D. Behling, "Molecular sieving effect of the zeolite-filled silicone rubber membrane in gas separation", J. Membr. Sci., 57, 289 (1991).
  16. C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, and M. Escoubes, "Sol-gel polyimide-silica composite membrane: gas transport properties", J. Membr. Sci., 130, 63 (1997). https://doi.org/10.1016/S0376-7388(97)00008-2
  17. C. J. Cornelius and E. Marand, "Hybrid silica-polyimide composite membranes: gas transport properties", J. Membr. Sci., 202, 97 (2002). https://doi.org/10.1016/S0376-7388(01)00734-7
  18. S. P. Nunes, J. Schultz, and K. V. Peinemann, "Silicone membranes with silica nanoparticles", J. Mater. Sci. Lett, 15, 1139 (1996). https://doi.org/10.1007/BF00539961
  19. W. J. Koros, B. J. Story, S. M. Jordan, K. O'brien, and G. R. Husk, "Material selection considerations for gas separation", Polymer Engineering and Science, 27(8), 603 (1987). https://doi.org/10.1002/pen.760270812
  20. L. C. Witchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, "Sorption and transport of organic vapors in poly[1-(trimethylsilyl)propyne]", J. Membr. Sci., 48, 321(1990). https://doi.org/10.1016/0376-7388(90)85013-B
  21. I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne )", J. Membr. Sci., 116, 199 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  22. M. Langsam and L. M. Robeson, "Substituted propyne polymers-Part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)propyne] for gas separation membranes", Polymer Eng. Sci., 29(1), 44 (1989). https://doi.org/10.1002/pen.760290109
  23. D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes", J. Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056
  24. B. D. Ratner, "Surface characterization of biomaterials by electron spectroscopy for chemical analysis", Analysis of Biomedical Engineering, 11, 313 (1983). https://doi.org/10.1007/BF02363290
  25. W. J. Ward III, W. R. Browall, and R. M. Salemme, "Ultrathin SiliconelPolycarbonate Membranes for Gas Separation Processes" J. Membr. Sci., 1, 99 (1976). https://doi.org/10.1016/S0376-7388(00)82259-0
  26. P. C. Lebaron and T. J. Pinnavaia, "Clay nanolayer reinforcement of a silicone elastomer", Chemistry and Materials, 13, 3760 (2001). https://doi.org/10.1021/cm010982m
  27. G. Clarizia, C. Algieri, and E. Drioli, "Filler polymer combination : aroute to modifY gas transport properties of a polymeric membrane", Polymer, 45, 5671 (2004). https://doi.org/10.1016/j.polymer.2004.06.001
  28. C. Dotremont, B. Brabants, K. Geeroms, J. Mewis, and C. Vandecasteele, "Sorption and diffusoin of chlorinated hydrocarbons in silicalite-filled PDMS membranes", J. Membr. Sci., 104, 109 (1995). https://doi.org/10.1016/0376-7388(95)00019-9
  29. M. J. Kim and K. H. Youm, "Preparation of Zeolite-Filled PDMS Membranes and It's Properties for Organic Vapor Separation", Korean Membrane J., 2(1), 48 (2000).
  30. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, and S. H. Hyun, "Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions", Korean Membrane J., 8(1), 21 (2006).
  31. H. S. Choi, J. H. Kim, S. K. Lee, and H. H. Park, "Dehydration Characteristics of i-Propyl Alcohol Aqueous Solution through NaA Zeolite Membrane", Membrane Journal, 12(3), 158 (2002).
  32. H. R. Lee, H. S. Ahn, I. J. Park, S. B. Lee, and Y. T. Lee, "Pervaporation of Aqueous iso-Propyl Alcohol Solution using NaAZeolite Membrane", Membrane Journal, 16(1), 25 (2006).
  33. S. W. Hwang, Y. C. Chung, B. C. Chum, and S. J. Lee, "Gas permeability of polyethylene films cotaining zeolite powder", Polymer (Korea), 28(5), 374 (2004).
  34. C. Maxwell, "Treatise on Electricity and Magnetism", Oxford University Press, London (1873).
  35. R. M. Barrer, "Diffusion and permeation in heterogeneous media", in : J. Crank, G. S. Park (Eds.), "Diffusion in Polymer", Academic Press, New York (1968).