DOI QR코드

DOI QR Code

Separation of H2 and N2 Gases by PTMSP-NaA Zeolite Composite Membranes

PTMSP-NaA Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구

  • Kim, Ok-Su (Department of Chemistry, Sang Myung University) ;
  • Yun, Seok Il (Department of Industrial Chemistry, Sang Myung University)
  • Received : 2015.01.05
  • Accepted : 2015.03.21
  • Published : 2015.04.30

Abstract

PTMSP-NaA zeolite composite membranes were prepared by adding 0~50 wt% NaA zeolite to PTMSP. The membranes were characterized by FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM. The permeabilities of $H_2$ and $N_2$ gases through PTMSP-NaA zeolite composite membranes was studied as a function of NaA zeolite contents. According to TGA measurements, when zeolite was inserted into the polymer, weight loss temperature and weight loss wt% of PTMSP-NaA zeolite composite membranes were decreased. Based on SEM observation, NaA zeolite was dispersed in the PTMSP-NaA zeolite composite membrane with the size $2{\sim}5{\mu}m$. The permeability of PTMSP-NaA zeolite composite membranes increased added as NaA zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as NaA zeolite content increased. PTMSP-NaA zeolite composite membrane showed better permeability and selectivity ($H_2/N_2$) of $H_2$ and $N_2$ than PTMSP-NaY zeolite composite membrane.

PTMSP에 0~50 wt% NaA Zeolite를 첨가하여 PTMSP-NaA Zeolite 복합막을 제조하고, PTMSP-NaA Zeolite 복합막의 특성을 FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM에 의해서 조사하였다. PTMSP-NaA Zeolite 복합막의 수소와 질소에 대한 투과도와 선택성을 NaA Zeolite 함량에 따라 조사하였다. TGA측정에 의하면 PTMSP에 NaA Zeolite가 첨가되었을 때 복합막의 감량이 완결되는 온도는 낮아졌고, 감량(wt%)도 작아졌다. SEM관찰에 의하면 NaA Zeolite는 PTMSP-NaA Zeolite 복합막 내에 $2{\sim}5{\mu}m$ 크기로 분산되어 있었다. PTMSP-NaA Zeolite 복합막에 대한 $N_2$$H_2$의 투과도는 NaA Zeolite 함량이 증가하면 증가하였다. 그리고 PTMSP-NaA Zeolite 복합막의 $N_2$에 대한 $H_2$의 선택성은 NaA Zeolite함량이 증가하면 감소하였다.

Keywords

References

  1. T. Masuda, E. Isobe, T. Higashimura, and K. Takada, "Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and charaterized by extremely high gas permeability", J. Am. Chem. Soc., 105, 7473 (1983). https://doi.org/10.1021/ja00363a061
  2. T. Nakagawa, T. Saito, S. Asakawa, and Y. Saito, "Polyacetylene derivatives as membranes for gas separation", Gas Sep. Purif., 2, 3 (1988). https://doi.org/10.1016/0950-4214(88)80035-5
  3. W. J. Koros, B. J. Story, S. M. Jordan, K. O'brien, and G. R. Husk, "Material selection considerations for gas separation", Polym. Eng. Sci., 27, 603 (1987). https://doi.org/10.1002/pen.760270812
  4. L. C. Witchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, "Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne]", J. Membr. Sci., 48, 321 (1990). https://doi.org/10.1016/0376-7388(90)85013-B
  5. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, "Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures", J. Membr. Sci., 191, 85 (2001). https://doi.org/10.1016/S0376-7388(01)00452-5
  6. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol'skii, "Gas and vapor permeation and sorption in poly(trimethylsilylpropyne)", J. Membr. Sci., 60, 13 (1991). https://doi.org/10.1016/S0376-7388(00)80321-X
  7. Y. Ichiraku and S. A. Srern, "An investigation of the high gas permeability of poly(1-Trimethylsilyl-1-Propyne)", J. Membr. Sci., 34, 5 (1987). https://doi.org/10.1016/S0376-7388(00)80017-4
  8. K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, "Nitrgen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends", J. Membr. Sci., 251, 101 (2005). https://doi.org/10.1016/j.memsci.2004.10.041
  9. T. M. Madkour, "Development of the molecular design rules of ultra-permeable poly[1-(trimethylsilyl)-1-propyne] membranes", Polymer, 41, 7489 (2000). https://doi.org/10.1016/S0032-3861(00)00083-5
  10. I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 116, 199 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  11. M. Langsam and L. M. Robeson, "Substituted propyne polymers-Part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)propyne] for gas separation membranes", Polym. Eng. Sci., 29(1), 44 (1989). https://doi.org/10.1002/pen.760290109
  12. K. Nagai, A. Higuchi, and T. Nakagawa, "Bromination and Gas Permeability of Poly(1-trimethylsilyl-1-propyne) Membrane", J. Appl. Polym. Sci., 54, 1207 (1994). https://doi.org/10.1002/app.1994.070540903
  13. L. Starannikova, V. Khodzhaeva, and Yu. Yampolskii, "Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability", J. Membr. Sci., 244, 183 (2004). https://doi.org/10.1016/j.memsci.2004.06.051
  14. K. Nagai and T. Nakagawa, "Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts", J. Membr. Sci., 105, 261 (1995). https://doi.org/10.1016/0376-7388(95)00065-K
  15. T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, "Physical modification of poly [1(trimethylsilyl)-1-propyne] membranes for gas separation", J. Membr. Sci., 94, 183 (1994). https://doi.org/10.1016/0376-7388(93)E0169-K
  16. Y. Nagase, S. Mori, and K. Matsui, "Chemical modification of poly(substituted-acetylene). III. Synthesis and gas permeability of poly(1-phenyl-1-propyne)/ poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., 26, 3131 (1988). https://doi.org/10.1002/pola.1988.080261122
  17. Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, "Chemical Modification of Poly(substituted-acetylene). I. Synthesis and Gas Permeability of Poly(1-trimethylsilyl-1-propyne) /Poly(dimethylsiloxane) Graft Copolymer", J. Polym. Sci. Part B: Polym. Phys., 29, 171 (1991). https://doi.org/10.1002/polb.1991.090290204
  18. Y. S. Kang, E. M. Shin, B. S. Jung, and J. J., J. Appl. Polym. Sci., 60, 13 (1991).
  19. Y. Yan, M. E. Davis, and G. R. Gavalas, "Preparation of zeolite ZSM-5 membranes by in-situ crystallization on porous a-Al2O3", Ind. Eng. Chem., 70, 1652 (1995).
  20. M.-D. Jia, Klaus-Viktor Peinemann and Rolf-Dieter Behling, "Preparation and characterization of thin-film zeolite-PDMS composite membranes", J. Membr. Sci., 73, 119 (1992). https://doi.org/10.1016/0376-7388(92)80122-Z
  21. T. Sano, Y. Kiyozumi, K. Maeda. M. Taba, S. Niwa, and F. Mizukami, "Synthesis and characterization of polycrystalline SAPO-5 film", J. Mol. Catal., 77, L19 (1992). https://doi.org/10.1016/0304-5102(92)80192-J
  22. T. Yazawa. H. Tanaka, and H. Nakamichi, "Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method", J. Membr. Sci., 60, 307 (1991). https://doi.org/10.1016/S0376-7388(00)81542-2
  23. S. Yamazaki and K. Tsutsumi, "Preparation of Zeolite Membranes on Papers or Fibers", Micropor. Mater., 4, 205 (1995). https://doi.org/10.1016/0927-6513(95)00006-U
  24. T. Masuda, H. Hara. M. Kouno, and H. Kinoshita, "Preparation of an A-type zeolite film on the surface of an alumina ceramic filter", Micropor. Mater., 3, 565 (1995). https://doi.org/10.1016/0927-6513(94)00071-3
  25. M. W. Anderson, K. S. Pachis, J. Shi, and S. W. Carr, "Synthesis of Self-Supporting Zeolite Films", J. Mater. Chem, 2, 255 (1992). https://doi.org/10.1039/jm9920200255
  26. J. G. Tsikoyiannis and W. W. Haag, "Synthesis and characterization of a pure zeolitic membrane", Zeolites, 12, 126 (1992). https://doi.org/10.1016/0144-2449(92)90070-6
  27. T. Sano, Y. Kiyozumi, K. Maeda, M. Toba, S. Niwa, and F. Mizukami, "Separation of ethanol/water mixture by silicalite membrane on pervaporation", Proc. 9th Inter. Zeolite Conf., 239 (1993).
  28. J. M. Duval, B. Folkers, M. H. V. Mulder. G. Desgrandchamps, and C. A. smolders, "Adsorbent filled polymeric membranes Application to pervaporatron and gas separ", Proc. 9th Inter. Zeolite Conf., 29 (1993).
  29. P. Kolsch, D. Venzke. M. Noack, E. Lieske, P. Toussaint, and J. Caro, "Preparation and testing of silicalite-in-metal-membranes", Stud. Surf. Sci. Catal., 84, 1075 (1994). https://doi.org/10.1016/S0167-2991(08)63644-7
  30. J. P. Boom, I. G. M. Punt, H. Zwijnenberg, R. de Boer, D. Bargeman, C. A. Smolders, and H. Strathmann, "Transport through zeolite filled polymeric membranes", J. Membr. Sci., 138, 237 (1998). https://doi.org/10.1016/S0376-7388(97)00228-7
  31. H. J. C. te Hennepe, D. Baremann, M. H. V. Mulder, and C. A Smolders, "Zeolite-filled silicone rubber membranes: Part 1. Membrane preparation and pervaporation results", J. Membr. Sci., 35, 39 (1987). https://doi.org/10.1016/S0376-7388(00)80921-7
  32. M. D. Jia, K. V. Peinemann, and R. D. Behling, "Preparation and characterization of thin-film zeolite-PDMS composite membranes", J. Membr. Sci., 7a, 119 (1992).
  33. M. D. Jia, K. V. Peinemann, and R. D. Behling, "Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation", J. Membr. Sci., 57, 289 (1991). https://doi.org/10.1016/S0376-7388(00)80684-5
  34. M. G. Suer, N. Bac, and L. Yilmaz, "Gas permeation characteristics of polymer-zeolite mixed matrix membranes", J. Membr. Sci., 91, 77 (1994). https://doi.org/10.1016/0376-7388(94)00018-2
  35. J. M. Duval, A. J. B. Kemperman, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, "Preparation of zeolite filled glassy polymer membranes", J. Appl. Polym. Sci., 54, 409 (1994). https://doi.org/10.1002/app.1994.070540401
  36. O.-S. Kim and S. R. Hong, "Separation of H and N Gases by PTMSP-NaY Zeolite Composite Membranes", Membr. J., 24, 285 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.285
  37. S. B. Tantekin-Erslmaz, C. Atalay-Oral, M. Tatlier, A. Erdem-Senatalar, B. Schoeman, and J. Sterte, "Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes", J. Membr. Sci., 175, 285 (2000). https://doi.org/10.1016/S0376-7388(00)00423-3