DOI QR코드

DOI QR Code

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO

GO를 함유한 PEBAX 복합막의 성질과 기체투과도

  • Lee, Seul Ki (Department of Chemistry, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Education, Sangmyung University) ;
  • Lee, Hyun Kyung (Department of Chemistry Engineering and Materials Science, Sangmyung University)
  • 이슬기 (상명대학교 화학과) ;
  • 홍세령 (상명대학교 계당교양교육원) ;
  • 이현경 (상명대학교 화공신소재학과)
  • Received : 2018.07.10
  • Accepted : 2018.08.13
  • Published : 2018.08.31

Abstract

To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.

본 연구는 GO (graphene oxide)를 활용한 기체 분리막 연구를 위해 PEBAX [poly(ether-block-amide)]에 GO를 첨가하여 PEBAX-GO 고분자 복합막을 제조하고, 이 복합막을 통해 $H_2$, $N_2$, $CH_4$, $CO_2$에 대한 기체투과 특성을 연구하였다. 기체투과 실험결과 PEBAX-GO 복합막에 대해 $N_2$, $CH_4$, $CO_2$의 기체투과도는 GO 함량이 증가함에 따라 점차 감소하였다. 반면 $H_2$의 기체투과도는 GO 함량이 증가함에 따라 증가하였고, GO 함량 30 wt%에서는 21.43 barrer로 단일막에 비하여 약 5배가 증가하였는데 GO는 $H_2$에 대해 다른 기체들에 비해 빠르고 선택적인 기체운송 channel로 더 용이하게 작용하였기 때문이다. 증가된 선택도($H_2/N_2$)와 선택도($H_2/CH_4$)는 투과기체 크기에 의한 확산선택도가, 증가된 선택도($CO_2/N_2$)와 선택도($CO_2/CH_4$)는 $CO_2$와 GO의 -COOH와의 친화성으로 용해선택성이 더 크게 영향을 미친 것으로 나타났다.

Keywords

References

  1. P. Pandey and R. S. Chauhan, "Membranes for gas separation", Prog. Polym. Sci., 26, 853 (2000).
  2. S. R. Reijerkerk, R. Jordana, K. Nijmeijer, and M. Wessling, "Highly hydrophilic, rubbery membranes for $CO_2$ capture and dehydration of flue gas", Int. J. Greenh. Gas. Con., 5, 26 (2011). https://doi.org/10.1016/j.ijggc.2010.06.014
  3. H. Sijbesma, K. Nymeijer, R. Van Marwijk, R. Heijboer, J. Potreck, and M. Wessling, "Flue gas dehydration using polymer membranes", J. Membr. Sci., 313, 263 (2008). https://doi.org/10.1016/j.memsci.2008.01.024
  4. L. Ge, Z. Zhu, and V. Rudolph, "Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane", Sep. Purif. Technol., 78, 76 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  5. F. H. Akhtar, M. Kumar, and K. V. Peinemann, "Pebax 1657/graphene oxide composite membranes for improved water vapor separation", J. Membr. Sci., 525, 187 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  6. Y. Cui, S. I. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites", Carbon, 98, 313 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
  7. G. Shi, Q. Meng, Z. Zhao, H. C. Kuan, A. Michelmore, and J. Ma, "Facile fabrication of graphene membranes with readily tunable structures", Appl. Mater. Inter., 7, 13745 (2015). https://doi.org/10.1021/am5091287
  8. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoffa, "Graphene based polymer nanocomposites", Polymer, 52, 5 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  9. K. K. Sadasivuni, D. Ponnamma, S. Thomas, and Y. Grohens, "Evolution from graphite to graphene elastomer composites", Prog. Polym. Sci., 39, 749 (2014). https://doi.org/10.1016/j.progpolymsci.2013.08.003
  10. J. Shen, "Size effects of graphene oxide on mixed matrix membranes for $CO_2$ separation", AIChE J., 62, 2843 (2016). https://doi.org/10.1002/aic.15260
  11. M. Karunakaran, R. Shevate, M. Kumar, and K. V. Peinemann, "$CO_2$-selective PEO-PBT ($PolyActive^{TM}$)/ graphene oxide composite membranes", Chem. Commun., 51, 14187 (2015). https://doi.org/10.1039/C5CC04999G
  12. S. Morimune, T. Nishino, and T. Goto, "Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites", ACS Appl. Mater. Interfaces, 4, 35961 (2012).
  13. H. D. Huang, P. G. Ren, J. Chen, W. Q. Zhang, X. Ji, and Z. M. Li, "High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films", J. Membr. Sci., 409-410, 156 (2012). https://doi.org/10.1016/j.memsci.2012.03.051
  14. W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  15. S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, "$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/n-butanol mixed solvents", Membr. J., 23, 367 (2013).
  16. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M. M. Khan, and V. Abetz, "PEBAX(R) with PEG functionalized POSS as nanocomposite membranes for $CO_2$ separation", J. Membr. Sci., 437, 286 (2013). https://doi.org/10.1016/j.memsci.2013.03.001
  17. R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, "Gas Permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes", Ind. Eng. Chem. Res., 49, 6530 (2010). https://doi.org/10.1021/ie9016495
  18. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  19. H. Ismail, P. Pasbakhsh, M. N. A. Fauzi, and A. A. Bakar, "Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites", Polym. Test., 27, 841 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  20. J. Ma, D. Ping, and X. Dong, "Recent developments of graphene oxide-based membranes: A review", Membranes, 7, 52 (2017). https://doi.org/10.3390/membranes7030052
  21. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
  22. V. I. Bondar, B. D. Freeman, and I. Pinau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  23. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030