DOI QR코드

DOI QR Code

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes

PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구

  • Ha, Jung Im (Department of Chemistry, Sang Myung University) ;
  • Kang, Tae Beom (Department of Chemistry, Sang Myung University)
  • Received : 2013.10.04
  • Accepted : 2013.12.18
  • Published : 2013.12.31

Abstract

The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

고분자 PDMS에 chitosan을 0.02~0.60 wt%까지 넣어 복합막을 제조하였고, SEM과 TGA에 의해서 막의 특성을 조사하였다. 기체투과 실험은 $30^{\circ}C$, $4kg/cm^2$ 조건에서 수행하였고, 복합막의 함량 변화에 따른 $H_2$$N_2$의 투과도와 선택도를 조사하였다. PDMS-chitosan 복합막의 $H_2$$N_2$ 투과도는 chitosan 함량이 증가하면 0~0.20 wt%까지는 증가하고 그 이상에서는 감소하였다. 그리고 선택도($H_2/N_2$)는 0~0.20 wt%까지는 감소하고 0.20~0.60 wt% 범위에서는 증가하였다. PDMS 고분자에 chitosan이 도입되어졌을 때 PDMS의 열적 안정성이 향상되었고, chitosan 함량이 증가했을 때 복합막의 표면은 거칠어지고 홀이 생성되었다.

Keywords

References

  1. G. H. Hsiue, W. J. Kuo, Y. P. Huang, and R. J. Jeng, "Microstructrural and morphological characteristics of PS-$SiO_{2}$ nanocomposites", Polymer, 41, 2813 (2000). https://doi.org/10.1016/S0032-3861(99)00478-4
  2. M. M. Collinson, "Recent trends in analytical applications of organically modified silicate materials", TrAC, 21, 30 (2002).
  3. J. Comyn and F. de Buyl, "Mobility of water and alcohols in a silica reinforced siloxane network", Euro. Polym. J., 37, 2385 (2001). https://doi.org/10.1016/S0014-3057(01)00156-2
  4. P. C. Lebaron and T. J. Pinnavaia, "Clay nanolayer reinforcement of a silicone elastomer", Chemistry and Materials, 13, 3760 (2001). https://doi.org/10.1021/cm010982m
  5. G. Clarizia, C. Algieri, and E. Drioli, "Filler polymer combination : aroute to modify gas transport properties of a polymeric membrane", Polymer, 45, 5671 (2004). https://doi.org/10.1016/j.polymer.2004.06.001
  6. M. J. Kim and K. H. Youm, "Preparation of zeolite- filled PDMS membranes and it's properties for organic vapor separation", Membrane Journal, 2(1), 48 (2000).
  7. D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/ urea bi-soft segment membranes", J. Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056
  8. C. S. Lee, E. H. Cho, S. Y. Ha, J. T. chung, and J. W. Rhim, "Multi-stage process study of PEIPDMS hollow composite membrane modules for $H_{2}/CO_{2}$ mixied gas separation", Membrane Journal, 23(1), 1 (2013).
  9. H. Kim, M. Lee, W. Park, S. Lee, H. Lee, and S. Lee, "Permeation properties of single gases($N_{2}$, $O_{2}$, $SF_{6}$, $CF_{4}$) through PDMS and PEBAX membrane", Membrane Journal, 22(3), 201 (2012).
  10. W. J. Ward III, W. R. Browall and R. M. Salemme, "Ultrathin Silicone/Polycarbonate Membranes for Gas Separation Processes", J. Membrane. Sci., 1, 99 (1976). https://doi.org/10.1016/S0376-7388(00)82259-0
  11. J. Qui, J. M. Zheng, and K. V. Peinemann, "Gas transport properties in a novel poly(trimethylsilylpropye) composite membrane with nanosized organic filler trimethylsilylglucose", Macromolecules, 39, 4093 (2006). https://doi.org/10.1021/ma0603635
  12. Z. Wang, M. Li, Y. Cai, J. Wang, and S. Wang, "Novel $CO_{2}$ selectively permeating membranes containg PETEDA dendrimer", J. Membrane. Sci., 290, 250 (2007). https://doi.org/10.1016/j.memsci.2006.12.041
  13. M. Darder, M. Colilla, and E. Ruiz-Hitzky, "Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite", Chemistry and Materials, 15, 3774 (2003). https://doi.org/10.1021/cm0343047
  14. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and Gas Barrier Properties of chitosan/clay nanocomposite film", Membrane Journal, 15(3), 247 (2005).
  15. M. Rutnakornpituk and P. Ngamdee, "Surface and mechanical properties of microporous membranes of poly(ethylene glycol)-polydimethylsiloxane copolymer/ chitosan", Polymer, 47, 7909 (2006). https://doi.org/10.1016/j.polymer.2006.09.028
  16. D. Enescu, V. Hamciuc, R. Ardeleanu, M. Cristea, A. Ioanid, V. Harabagiu, and B. C. Simionescu, "Polydimethylsiloxane modified chitosan. Part III: Preparation and characterization of hybrid membranes", Carbohydrate Polymers, 76 268 (2009). https://doi.org/10.1016/j.carbpol.2008.10.026
  17. J. I. Ha and T. B. Kang, "Separation of $H_{2}$ and $N_{2}$ by PDMS-NaY zeolite composite membranes", Membrane Journal, 20(1), 47 (2010).
  18. M. Rutnakornpituk, P. Ngamdee, and P. Phinyocheep, "Preparation and properties of polydimethylsiloxane- modified chitosan", Carbohydrate Polymers, 63, 229 (2006). https://doi.org/10.1016/j.carbpol.2005.08.063
  19. C. Maxwell, "Treatise on Electricity and Magnetism", Oxford University Press, London (1873).
  20. R. M. Barrer, "Diffusion and permeation in heterogeneous media", in : J. Crank, G. S. Park (Eds.), "Diffusion in Polymer", Academic Press, New York (1968).