• Title/Summary/Keyword: second order term

Search Result 571, Processing Time 0.023 seconds

NONLINEAR FREE SURFACE CONDITION DUE TO SECOND ORDER DIFFRACTION BY A PAIR OF CYLINDERS

  • BHATTA DAMBARU D.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.171-182
    • /
    • 2005
  • An analysis of the non-homogeneous term involved in the free surface condition for second order wave diffraction on a pair of cylinders is presented. In the computations of the nonlinear loads on offshore structures, the most challenging task is the computation of the free surface integral. The main contribution to this integrand is due to the non-homogeneous term present in the free surface condition for second order scattered potential. In this paper, the free surface condition for the second order scattered potential is derived. Under the assumption of large spacing between the two cylinders, waves scattered by one cylinder may be replaced in the vicinity of the other cylinder by equivalent plane waves together with non-planner correction terms. Then solving a complex matrix equation, the first order scattered potential is derived and since the free surface term for second order scattered potential can be expressed in terms of the first order potentials, the free surface term can be obtained using the knowledge of first order potentials only.

INTERVAL OSCILLATION THEOREMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

  • Bin, Zheng
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.581-589
    • /
    • 2009
  • In this paper, we are concerned with a class of nonlinear second-order differential equations with a nonlinear damping term and forcing term: $$(r(t)k_1(x(t),x'(t)))'+p(t)k_2(x(t),x'(t))x'(t)+q(t)f(x(t))=0$$. Passage to more general class of equations allows us to remove a restrictive condition usually imposed on the nonlinearity. And, as a consequence, our results apply to wider classes of nonlinear differential equations. Some illustrative examples are considered.

  • PDF

A Study on Keyword Extraction From a Single Document Using Term Clustering (용어 클러스터링을 이용한 단일문서 키워드 추출에 관한 연구)

  • Han, Seung-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.3
    • /
    • pp.155-173
    • /
    • 2010
  • In this study, a new keyword extraction algorithm is applied to a single document with term clustering. A single document is divided by multiple passages, and two ways of calculating similarities between two terms are investigated; the first-order similarity and the second-order distributional similarity. In this experiment, the best cluster performance is achieved with a 50-term passage from the second-order distributional similarity. From the results of first experiment, the second-order distribution similarity was also applied to various keyword extraction methods using statistic information of terms. In the second experiment, pf(paragraph frequency) and $tf{\times}ipf$(term frequency by inverse paragraph frequency) were found to improve the overall performance of keyword extraction. Therefore, it showed that the algorithm fulfills the necessary conditions which good keywords should have.

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

EFFICIENT NUMERICAL METHODS FOR THE KDV EQUATION

  • Kim, Mi-Young;Choi, Young-Kwang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.291-306
    • /
    • 2011
  • We consider the second order Strang splitting method to approximate the solution to the KdV equation. The model equation is split into three sets of initial value problems containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is applied to approximate the convection term and the second order centered difference method to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method is used to the equation containing convection term and implicit Crank-Nicolson method to the equation containing dispersal term to reduce the CFL restriction. Several numerical examples of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves, or may show instabilities of the solution, are presented.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

OSCILLATION CRITERIA OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Lv, Xiaojing;Yu, Tian
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.125-138
    • /
    • 2003
  • Some Riccati type difference inequalities are established for the second-order nonlinear difference equations with negative neutral term $\Delta$(a(n)$\Delta$(x(n) - px(n-$\tau$))) + f(n, x($\sigma$(n))) = 0 using these inequalities we obtain some oscillation criteria for the above equation.

Oscillation of Second-Order Nonlinear Forced Functional Dynamic Equations with Damping Term on Time Scales

  • Agwa, Hassan Ahmed;Khodier, Ahmed Mahmoud;Ahmed, Heba Mostaafa Atteya
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.777-789
    • /
    • 2016
  • In this paper, we establish some new oscillation criteria for the second-order forced nonlinear functional dynamic equations with damping term $$(r(t)x^{\Delta}(t))^{\Delta}+q({\sigma}(t))x^{\Delta}(t)+p(t)f(x({\tau}(t)))=e(t)$$, and $$(r(t)x^{\Delta}(t))^{\Delta}+q(t)x^{\Delta}(t)+p(t)f(x({\sigma}(t)))=e(t)$$, on a time scale ${\mathbb{T}}$, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-continuous) functions [1] defined on ${\mathbb{T}}$ with p(t) < 0 and ${\tau}:{\mathbb{T}}{\rightarrow}{\mathbb{T}}$ is a strictly increasing differentiable function and ${\lim}_{t{\rightarrow}{\infty}}{\tau}(t)={\infty}$. No restriction is imposed on the forcing term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed before. Finally, we give some examples to illustrate our main results.

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.