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Abstract. In this paper, we establish some new oscillation criteria for the second-order
forced nonlinear functional dynamic equations with damping term

(r(t)x∆(t))∆ + q(σ(t))x∆(t) + p(t)f(x(τ(t))) = e(t),

and

(r(t)x∆(t))∆ + q(t)x∆(t) + p(t)f(x(σ(t))) = e(t),

on a time scale T, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-

continuous) functions [1] defined on T with p(t) < 0 and τ : T → T is a strictly increasing

differentiable function and limt→∞ τ(t) = ∞. No restriction is imposed on the forcing

term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious

results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed

before. Finally, we give some examples to illustrate our main results.

1. Introduction

The theory of time scales was introduced by Hilger [4] in order to unify, extend
and generalize ideas from discrete calculus, quantum calculus and continuous cal-
culus to arbitrary time scale calculus. A time scale is an arbitrary closed subset of
the reals. When time scale equals to the reals or to the integers, it represents the
classical theories of differential and difference equations. Many other interesting
time scales exist, e.g., T = qN0 := {qt : t ∈ N0 for q > 1} (which has important
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applications in quantum theory), T = hN with h > 0, T = N2 and T = Tn (the
space of the harmonic numbers). For an introduction to time scale calculus and
dynamic equations, see Bohner and Peterson books [1, 2].

In this paper, we will consider the following second-order nonlinear forced func-
tional dynamic equations with damping term of the form

(1.1) (r(t)x∆(t))∆ + q(t)x∆(t) + p(t)f(x(σ(t))) = e(t), t ∈ T, t ≥ t0,

and

(1.2) (r(t)x∆(t))∆ + q(σ(t))x∆(t) + p(t)f(x(τ(t))) = e(t), t ∈ T, t ≥ t0,

where T is an unbounded above time scale with t0 ∈ T; r(t), p(t), q(t) and e(t)
are real-valued right-dense continuous functions on T with p(t) < 0. The function
τ : T → T, satisfies τ(t) → ∞ as t → ∞ and f ∈ C(R,R), xf(x) > 0 whenever
x 6= 0.

By a solution of (1.1) or (1.2), we mean a nontrivial real-valued function x
satisfies (1.1) or (1.2) for t ∈ T. A solution x of (1.1) or (1.2) is called oscillatory
if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory. Eq. (1.1) or
(1.2) is said to be oscillatory if all of its nonconstant solutions defined for all large
t are oscillatory.

Equation (1.1) includes the second order forced nonlinear differential equation

(1.3) (r(t)x
′
(t))

′
+ q(t)x

′
(t) + p(t)f(x(t)) = e(t),

and when f(x) = |x(t)|νsgn x(t), equation (1.3) takes the form:

(1.4) (r(t)x
′
(t))

′
+ q(t)x

′
(t) + p(t)|x(t)|νsgn x(t) = e(t) with ν > 0,

which is the forced Emden-Fowler equation.
The oscillatory behavior of equation (1.3) has been studied by many authors.

Kartsatos [6, 7] assumed that e(t) is the second derivative of an oscillatory function
h(t). Under certain conditions, he found that the forced equation

(1.5) x
′′
(t) + q(t)f(x(t)) = e(t),

would remain oscillatory if the unforced equation is oscillatory. Later, many au-
thors such as [9, 13] investigate the oscillatory behavior of (1.5) by using Kartsatos
technique.

Recently, without imposing the Kartsatos condition e(t) = hn(t) (the nth deriva-
tive of an oscillatory function h(t)), authors [8, 10, 11, 12] studied the oscillation
of the forced equation. In fact Sun and J. S. Wong [11] obtained some new oscil-
lation criteria for the super linear (ν > 1) equation (1.3) including equation (1.4)
without imposing the Kartsatos condition. They say nothing about the oscillation
of equation(1.3) with 0 < ν < 1. Our purpose in this paper is to investigate the
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oscillation of equations (1.1) and (1.2), including the results of Sun and Wong [11].
We believe that our approach is simpler and more general than that of Sun and
Wong [11]. We are also answer the question in [11] for the oscillation of equation
(1.3) when 0 < ν < 1.

2. Main Results

In this section, we establish some sufficient conditions for the oscillation of
equations (1.1) and (1.2). Let D = {(t, s) ∈ T × T : t > s ≥ t0}, D0 = {(t, s) ∈
T × T : t ≥ s ≥ t0}. We say that the function H ∈ Crd(D,R) belongs to the class
=, if

(H1) H(t, t) = 0, t ≥ t0, H(t, s) > 0 on D0,

(H2) H has a non positive continuous ∆-partial derivative H∆s(t, s) and a non

negative continuous second-order ∆-partial derivative H∆2
s2 (t, s) with respect

to the second variable,

(H3) H∆s(t, t) = 0, limt→∞
H∆s (t,t0)
H(t,t0) = O(1).

I- Oscillatory behavior of solutions of Eq. (1.1):

Theorem 2.1. Assume that there exist two positive constants c and ν such that
either

|f(x)| ≥ c|x|ν , ν > 1,

or

|f(x)| ≤ c|x|ν , 0 < ν < 1.

If there exists a kernel function H(t, s) satisfying (H1)-(H3) such that

(2.1) [(H∆s(t, s)r(s))∆s − (H(t, σ(s))q(s))∆s ] ≥ 0,

(2.2) lim sup
t→∞

1

H(t, t0)

∫ t

t0

[H(t, σ(s))e(s)− P (t, s)]∆s =∞,

(2.3) lim inf
t→∞

1

H(t, t0)

∫ t

t0

[H(t, σ(s))e(s)− P (t, s)]∆s = −∞,

where
P (t, s) = (ν−1)ν

ν
1−ν [(H∆s(t, s)r(s))∆s − (H(t, σ(s))q(s))∆s]

ν
ν−1 [cH(t, σ(s))|p(s)|]

1
1−ν ,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Suppose that x(t) > 0
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for t ≥ t0 (when x(t) is eventually negative, the proof follows the same argument).
Multiplying Eq. (1.1) by H(t, σ(s)) for t ≥ t0 and integrating from t0 to t, we get∫ t

t0

H(t, σ(s))e(s)∆s =

∫ t

t0

H(t, σ(s))(r(s)x∆(s))∆∆s+∫ t

t0

H(t, σ(s))q(s)x∆(s)∆s+

∫ t

t0

H(t, σ(s))p(s)f(x(σ(s)))∆s.(2.4)

Using integration by parts two times, we have∫ t

t0

H(t, σ(s))(r(s)x∆(s))∆∆s = −H(t, t0)r(t0)x∆(t0)−
∫ t

t0

H∆s(t, s)r(s)x∆(s)∆s.

= −H(t, t0)r(t0)x∆(t0) +H∆s(t, t0)r(t0)x(t0)+

(2.5)

∫ t

t0

(H∆s(t, s)r(s))∆x(σ(s))∆s,

and
(2.6)∫ t

t0

H(t, σ(s))q(s)x∆(s)∆s = −H(t, σ(t0))q(t0)x(t0)−
∫ t

t0

(H(t, σ(s))q(s))∆sx(σ(s))∆s.

Substituting (2.5) and (2.6) into (2.4), we have∫ t

t0

H(t, σ(s))e(s)∆s = M(t, t0)−
∫ t

t0

(H(t, σ(s))q(s))∆sx(σ(s))∆s

+

∫ t

t0

(H∆s(t, s)r(s))∆sx(σ(s))∆s+

∫ t

t0

H(t, σ(s))p(s)f(x(σ(s)))∆s,

where M(t, t0) = −H(t, t0)r(t0)x∆(t0)+H∆s(t, t0)r(t0)x(t0)−H(t, σ(t0))q(t0)x(t0).

Case I: For |f(x)| ≥ c|x|ν , ν > 1 and p(t) < 0, we have∫ t

t0

H(t, σ(s))e(s)∆s ≤M(t, t0)+

∫ t

t0

[((H∆s(t, s)r(s))∆s−(H(t, σ(s))q(s))∆s)x(σ(s))−

(2.7) cH(t, σ(s))|p(s)|xν(σ(s))]∆s.

Set F (x) = ax − bxν , for x > 0, a ≥ 0, b > 0. If ν > 1, then F (x) has the

maximum Fmax = (ν − 1)ν
ν

1−ν a
ν
ν−1 b

1
1−ν , (see [3]). From (2.7), we have∫ t

t0

H(t, σ(s))e(s)∆s ≤M(t, t0) +

∫ t

t0

P (t, s)∆s,
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where
P (t, s) = (ν−1)ν

ν
1−ν [(H∆s(t, s)r(s))∆s − (H(t, σ(s))q(s))∆s]

ν
ν−1 [cH(t, σ(s))|p(s)|]

1
1−ν .

Consequently,

1

H(t, t0)

∫ t

t0

[H(t, σ(s))e(s)− P (t, s)]∆s ≤ M(t, t0)

H(t, t0)
.

Taking lim sup as t→∞, we get a contradiction to (2.2).

Case II: For |f(x)| ≤ c|x|ν , 0 < ν < 1 and p(t) < 0, we have∫ t

t0

H(t, σ(s))e(s)∆s ≥M(t, t0)+

∫ t

t0

[((H∆s(t, s)r(s))∆s−(H(t, σ(s))q(s))∆s)x(σ(s))−

(2.8) cH(t, σ(s))|p(s)|xν(σ(s))]∆s.

Set F (x) = ax− bxν , for x > 0, a ≥ 0, b > 0. If 0 < ν < 1, then F (x) has the

minimum Fmin = (ν − 1)ν
ν

1−ν a
ν
ν−1 b

1
1−ν , (see [3]). From (2.8), we have

1

H(t, t0)

∫ t

t0

[H(t, σ(s))e(s)− P (t, s)]∆s ≥ M(t, t0)

H(t, t0)
.

Taking lim inf as t→∞, we get a contradiction to (2.3).
The proof is completed. 2

Remark. Theorem 2.2 of [8] and Theorem 3.4 of [12] are special cases of our
Theorem 2.1 when q(t) = 0 and r(t) = 1.

II - Oscillatory behavior of solutions of Eq. (1.2):

In the following, we establish oscillation criteria for Eq. (1.2) when τ(t) ≤ t and
τ(t) ≥ t. The oscillation of this equation does not discussed before.

Theorem 2.2. Assume that τ(t) ≤ t and there exist two positive constants c and
ν such that

|f(x)| ≤ c|x|ν , 0 < ν < 1.

If there exists a kernel function H(t, s) satisfying (H1)− (H3) such that

(2.9) (H∆s(t, s)r(s))∆s ≥ 0, (H(t, s)q(s))∆s ≤ 0,

(2.10) lim sup
t→∞

1

H(t, t0)
[

∫ t

t0

H(t, σ(s))e(s)∆s+

∫ τ(t)

t0

Q(t, s)∆s] =∞,
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(2.11) lim inf
t→∞

1

H(t, t0)
[

∫ t

t0

H(t, σ(s))e(s)∆s−
∫ τ(t)

t0

Q(t, s)∆s] = −∞,

where Q(t, s) = (ν − 1)ν
ν

1−ν [(H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆s+

|(H(t, s)q(s))∆s|]
ν
ν−1 [cH(t, σ(τ∗(s)))|p(τ∗(s))|(τ∗(s))∆s ]

1
1−ν , τ∗(t) and σ∗(t) are the

inverse functions of τ(t) and σ(t) respectively, then equation (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.2). Suppose that x(t) > 0
for t ≥ t0 (when x(t) is eventually negative, the proof follows the same argument).
Multiplying Eq. (1.2) by H(t, σ(s)) for t ≥ t0 and integrating from t0 to t, we get∫ t

t0

H(t, σ(s))e(s)∆s =

∫ t

t0

H(t, σ(s))(r(s)x∆(s))∆∆s+∫ t

t0

H(t, σ(s))q(σ(s))x∆(s)∆s+

∫ t

t0

H(t, σ(s))p(s)f(x(τ(s)))∆s.(2.12)

Using integration by parts two times, we have∫ t

t0

H(t, σ(s))(r(s)x∆(s))∆∆s = −H(t, t0)r(t0)x∆(t0) +H∆s(t, t0)r(t0)x(t0)

(2.13) +

∫ t

t0

(H∆s(t, s)r(s))∆sx(σ(s))∆s,

and
(2.14)∫ t

t0

H(t, σ(s))q(σ(s))x∆(s)∆s = −H(t, t0)q(t0)x(t0)−
∫ t

t0

(H(t, s)q(s))∆sx(s)∆s.

Substituting (2.13) and (2.14) into (2.12), we have∫ t

t0

H(t, σ(s))e(s)∆s = N(t, t0)−
∫ t

t0

(H(t, s)q(s))∆sx(s)∆s+

∫ t

t0

(H∆s(t, s)r(s))∆sx(σ(s))∆s+

∫ t

t0

H(t, σ(s))p(s)f(x(τ(s)))∆s,

where N(t, t0) = −H(t, t0)r(t0)x∆(t0) +H∆s(t, t0)r(t0)x(t0)−H(t, t0)q(t0)x(t0).

Since |f(x)| ≤ c|x|ν , 0 < ν < 1 and p(t) < 0, we have∫ t

t0

H(t, σ(s))e(s)∆s ≥ N(t, t0) +

∫ t

t0

(H∆s(t, s)r(s))∆sx(σ(s))∆s−

(2.15) ∫ t

t0

(H(t, s)q(s))∆sx(s)∆s−
∫ t

t0

cH(t, σ(s))|p(s)|xν(τ(s))∆s.
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Since

∫ t

t0

(H∆s(t, s)r(s))∆sx(σ(s))∆s =

∫ σ(t)

σ(t0)

(H∆(t, σ∗(θ))r(σ∗(θ)))∆(σ∗(θ))∆x(θ)∆θ,

and∫ t

t0

cH(t, σ(s))|p(s)|xν(τ(s))∆s =

∫ τ(t)

τ(t0)

cH(t, σ(τ∗(ξ)))|p(τ∗(ξ))|(τ∗(ξ))∆xν(ξ)∆ξ,

then (2.15), becomes∫ t

t0

H(t, σ(s))e(s)∆s ≥ N(t, t0)+

∫ σ(t)

σ(t0)

(H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆sx(s)∆s+

(2.16)∫ t

t0

|(H(t, s)q(s))∆s |x(s)∆s− c
∫ τ(t)

τ(t0)

H(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆sxν(s)∆s.

Since τ(t) ≤ t ≤ σ(t), we have∫ t

t0

H(t, σ(s))e(s)∆s ≥ K(t, t0) +

∫ τ(t)

t0

[((H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆s+

|H(t, s)q(s))∆s |)x(s)− cH(t, σ(τ∗(s)))|p(τ∗(s))|(τ∗(s))∆sxν(s)]∆s,(2.17)

where

K(t, t0) = N(t, t0)−
∫ σ(t0)

t0

(H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆sx(s)∆s−

c

∫ t0

τ(t0)

H(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆sxν(s)∆s.

Set F (x) = ax− bxν , for x > 0, a ≥ 0, b > 0. If 0 < ν < 1, then F (x) has the

minimum Fmin = (ν − 1)ν
ν

1−ν a
ν
ν−1 b

1
1−ν . From (2.17), we have∫ t

t0

H(t, σ(s))e(s)∆s ≥ K(t, t0) +

∫ τ(t)

t0

Q(t, s)∆s.

i.e.,

(2.18)

∫ t

t0

H(t, σ(s))e(s)∆s−
∫ τ(t)

t0

Q(t, s)∆s ≥ K(t, t0).
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Thus, multiplying (2.18) by H−1(t, t0) and taking the Lower limit as t → ∞,
we get a contradiction with (2.11). The proof is completed. 2

Theorem 2.3. Assume that τ(t) ≥ t and there exist two positive constants c and
ν such that

|f(x)| ≤ c|x|ν , 0 < ν < 1.

If there exists a kernel function H(t, s) satisfying (H1)-(H3) such that

(2.19) (H∆s(t, s)r(s))∆s ≥ 0, ((H(t, s)q(s))∆s ≤ 0,

(2.20) lim
t→∞

1

H(t, t0)

∫ τ(t)

t

cH(t, σ(τ∗(s)))|p(τ∗(s))|(τ∗(s))∆ssνk∆s <∞,

(2.21) lim sup
t→∞

1

H(t, t0)
[

∫ t

t0

H(t, σ(s))e(s)∆s+

∫ t

τ(t0)

Q(t, s)∆s] =∞,

(2.22) lim inf
t→∞

1

H(t, t0)
[

∫ t

t0

H(t, σ(s))e(s)∆s−
∫ t

τ(t0)

Q(t, s)∆s] = −∞,

where Q(t, s), τ∗(t) and σ∗(t) are the same as in Theorem 2.2, then all solutions of
equation (1.2) satisfying x(t) = O(tk) are oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.2). Suppose that x(t) > 0
for t ≥ t0 (when x(t) is eventually negative, the proof follows the same argument).
Proceeding as in the proof of Theorem 2.2 to get (2.16), i.e.,

∫ t

t0

H(t, σ(s))e(s)∆s ≥ N(t, t0) +

∫ σ(t)

σ(t0)

(H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆sx(s)∆s+∫ t

t0

|(H(t, s)q(s))∆s |x(s)∆s− c
∫ τ(t)

τ(t0)

H(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆sxν(s)∆s.

Since τ(t) ≥ t, we have∫ t

t0

H(t, σ(s))e(s)∆s ≥ L(t, t0) +

∫ t

τ(t0)

[((H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆s+

|(H(t, s)q(s))∆s)|x(s)− cH(t, σ(τ∗(s)))|p(τ∗(s))|(τ∗(s))∆sxν(s)]∆s−∫ τ(t)

t

cH(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆sxν(s)∆s,

where

L(t, t0) = N(t, t0) +

∫ τ(t0)

σ(t0)

(H∆s(t, σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆sx(s)∆s.
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From Theorem 2.2, we have∫ t

t0

H(t, σ(s))e(s)∆s ≥ L(t, t0) +

∫ t

τ(t0)

Q(t, s)∆s−∫ τ(t)

t

cH(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆sxν(s)∆s.

Since x(t) ≤Mtk for some constant M > 0, we have∫ t

t0

H(t, σ(s))e(s)∆s−
∫ t

τ(t0)

Q(t, s)∆s ≥ L(t, t0)−

cMν

∫ τ(t)

t

H(t, σ(τ∗(s))|p(τ∗(s))|(τ∗(s))∆ssνk(s)∆s.(2.23)

Thus, multiplying (2.23) by H−1(t, t0) and taking the Lower limit as t → ∞, we
get a contradiction with (2.22). The proof is completed. 2

3. Examples

Example 3.1. Consider the equation (T = R)

(3.1) −x
′′
(t) + x

′
(t)− tmxν(t) = tα cos t,

where m ≥ 0, α > 0 and 0 < ν < 1. Here, r(t) = −1, q(t) = 1, p(t) = −tm,
f(x) = xν , 0 < ν < 1 with c = 1 and e(t) = tα cos t. To apply Theorem 2.1, take
H(t, s) = (t− s). Therefore, we have

[(H
′
(t, s)r(s))

′
− (H(t, s)q(t))

′
] = 1 > 0.

Since P (t, s) = (ν − 1)ν
ν

1−ν (t− s)
1

1−ν s
m

1−ν , then∫ t

0

P (t, s) ds = (ν − 1)ν
ν

1−ν

∫ t

0

(t− s)
1

1−ν s
m

1−ν ds

= (ν − 1)ν
ν

1−ν t
m+1
1−ν +1

∫ 1

0

(1− u)
1

1−ν u
m

1−ν du

= (ν − 1)ν
ν

1−νB(
1

1− ν
+ 1,

m

1− ν
+ 1)t

m+1
1−ν +1,

where B( 1
1−ν + 1, m

1−ν + 1) is positive constant. On the other hand,∫ t

0

(t− s)sα cos s ds = tα+2

∫ 1

0

(1− u)uα cosut du = tα+2I1,α(t),

where I1,α(t) has the asymptotic formula

I1,α(t) = Γ(2)t−2 cos(t− π) + o(t−2) as t→∞.
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Consequently, Eq. (3.1) is oscillatory if α > m+1
1−ν + 1.

Remark. The result of [11] can not be applied to equation (3.1) for r(t) = −1 < 0
and 0 < ν < 1. But, according to Theorem 2.1, when T = R and H(t, s) = (t− s),
this equation is oscillatory.

Example 3.2. Consider the equation (T = R)

(3.2) (tx
′
(t))

′
+ x

′
(t)− tmxν(t) = tα cos t,

where m > 0, α > 0 and 0 < ν < 1. Here, r(t) = t, q(t) = 1, p(t) = −tm,
f(x) = xν , 0 < ν < 1 with c = 1 and e(t) = tα cos t. To apply Theorem 2.1, take
H(t, s) = (t− s)β with β > 1. Therefore, we have

[(H
′
(t, s)r(s))

′
− (H(t, s)q(t))

′
] = β(β − 1)(t− s)β−2s > 0.

Since P (t, s) = (ν − 1)( ν
β(β−1) )

ν
1−ν (t− s)

β+(2−β)ν
1−ν s

m−ν
1−ν , then∫ t

0

P (t, s) ds = (ν − 1)(
ν

β(β − 1)
)

ν
1−ν

∫ t

0

(t− s)
β+(2−β)ν

1−ν s
m−ν
1−ν ds

= (ν − 1)(
ν

β(β − 1)
)

ν
1−ν t

m+β+(1−β)ν
1−ν +1

∫ 1

0

(1− u)
β+(2−β)ν

1−ν u
m−ν
1−ν du

= (ν − 1)(
ν

β(β − 1)
)

ν
1−νB(

β + (2− β)ν

1− ν
+ 1,

m− ν
1− ν

+ 1)t
m+β+(1−β)ν

1−ν +1,

where B(β+(2−β)ν
1−ν + 1, m−ν1−ν + 1) is positive constant. On the other hand,∫ t

0

(t− s)βsα cos s ds = tβ+α+1

∫ 1

0

(1− u)βuα cosut du = tβ+α+1Iβ,α(t),

where Iβ,α(t) has the asymptotic formula

Iβ,α(t) = Γ(β + 1)t−β−1 cos(t− (β + 1)
π

2
) + o(t−β−1) as t→∞.

Consequently, Eq. (3.2) is oscillatory if α > m+β+(1−β)ν
1−ν + 1.

Example 3.3. Consider the equation (T = R)

(3.3) x
′′
(t)− tmxν(t− τ) = tα cos t,

where m ≥ 0, α > 0 and 0 < ν < 1. Here, r(t) = 1, q(t) = 0, p(t) = −tm,
f(x) = xν , 0 < ν < 1 with c = 1 and e(t) = tα cos t. To apply Theorem 2.2, take
H(t, s) = (t− s)β with β > 1. Therefore, we have

(H
′
(t, s)r(s))

′
= β(β − 1)(t− s)β−2 > 0, (H(t, s)q(t))

′
= 0.
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Since Q(t, s) = (ν − 1)( ν
β(β−1) )

ν
1−ν (t− s)

(2−β)ν
1−ν (t− s− τ)

β
1−ν (s+ τ)

m
1−ν , then∫ t−τ

0

Q(t, s) ds = (ν − 1)
ν

β(β − 1)

ν
1−ν

∫ t

τ

(t− s+ τ)
(2−β)ν

1−ν (t− s)
β

1−ν s
m

1−ν ds

≥ (ν − 1)(
ν

β(β − 1)
)

ν
1−ν t

(2−β)ν
1−ν

∫ t

0

(t− s)
β

1−ν s
m

1−ν ds

= (ν − 1)(
ν

β(β − 1)
)

ν
1−ν t

m+β+(2−β)ν
1−ν +1

∫ 1

0

(1− u)
β

1−ν u
m

1−ν du

= (ν − 1)(
ν

β(β − 1)
)

ν
1−νB(

β

1− ν
+ 1,

m

1− ν
+ 1)t

m+β+(2−β)ν
1−ν +1,

where B( β
1−ν + 1, m

1−ν + 1) is positive constant. On the other hand,∫ t

0

(t− s)βsα cos s ds = tβ+α+1

∫ 1

0

(1− u)βuα cosut du = tβ+α+1Iβ,α(t),

where Iβ,α(t) has the asymptotic formula

Iβ,α(t) = Γ(β + 1)t−β−1 cos(t− (β + 1)
π

2
) + o(t−β−1) as t→∞.

Consequently, Eq. (3.3) is oscillatory if α > m+β+(2−β)ν
1−ν + 1.

Remark. The results of [8, 10, 11, 12] can not be applied to equation (3.3) for
τ(t) 6= t (τ(t) ≤ t). But, according to Theorem 2.2, when T = R and H(t, s) =
(t− s)β with β > 1, this equation is oscillatory.

Example 3.4. Consider the equation (T = R)

(3.4) (−tx
′
(t))

′
− t5xν(t) = tα cos t,

where α > 0 and 0 < ν < 1. Here, r(t) = −t, q(t) = 0, p(t) = −t5, f(x) = xν , 0 <
ν < 1 with c = 1 and e(t) = tα cos t. To apply Theorem 2.1, take H(t, s) = (t− s).
Therefore, we have

(H
′
(t, s)r(s))

′
= 1 > 0, (H(t, s)q(t)

′
= 0.

Since P (t, s) = (ν − 1)ν
ν

1−ν (t− s)
1

1−ν s
5

1−ν , then∫ t

0

P (t, s)ds = (ν − 1)ν
ν

1−ν

∫ t

0

(t− s)
1

1−ν s
5

1−ν ds

= (ν − 1)ν
ν

1−ν t
6

1−ν+1

∫ 1

0

(1− u)
1

1−ν u
5

1−ν du

= (ν − 1)ν
ν

1−νB(
1

1− ν
+ 1,

5

1− ν
+ 1)t

6
1−ν+1,
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where B( 1
1−ν + 1, 5

1−ν + 1) is positive constant. On the other hand,∫ t

0

(t− s)sα cos s ds = tα+2

∫ 1

0

(1− u)uα cosut du = tα+2I1,α(t),

where I1,α(t) has the asymptotic formula

I1,α(t) = Γ(2)t−2 cos(t− π) + o(t−2) as t→∞.

Consequently, Eq. (3.4) is oscillatory if α > 6
1−ν + 1.

Remark. The results of [8, 10, 12] can not be applied to equation (3.4) for r(t) =
−t < 0. But, according to Theorem 2.1, when T = R and H(t, s) = (t − s), this
equation is oscillatory.
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Boston, 2003.
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