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TWO-SCALE CONVERGENCE FOR
PARTIAL DIFFERENTIAL EQUATIONS
WITH RANDOM COEFFICIENTS

HEeE CHUL PaAkK

ABSTRACT. We introduce the notion of two-scale convergence for
partial differential equations with random coefficients that gives a
very efficient way of finding homogenized differential equations with
random coefficients. For an application, we find the homogenized
matrices for linear second order elliptic equations with random co-
efficients. We suggest a natural way of finding the two-scale limit
of second order equations by considering the flux term.

1. Imtroduction

It is well known that the modeling of physical processes in strongly
inhomogeneous media leads to the study of differential equations with
rapidly varying coefficients. Regarding coefficients as periodic functions,
many attempts for getting approximate solutions have been made and
some of successful ones are G-convergence by Spagnolo, H-convergence
by Tartar and I'-convergence by De Giorgi. Another common way is to
use formal asymptotic expansions - we first guess by a formal expansion
what the limit should be and then justify it by energy method. The two-
scale convergence is an efficient way of combining these two procedures.
But it is restricted to periodic cases, which was pointed out by G. Allaire
in [3]. In this note, we present a new approach which makes use of the
two-scale convergence technique for differential equations with random
coefficients.
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For an application, we find the homogenized matrix of linear second-
order elliptic equations with random coeflicients:

—divAVu., = f in
u. = 0 on .

The first rigorous trial for finding homogenized matrices for periodic co-
efficients was accomplished by De Giorgi and Spagnolo in 1972. Their
proof was rather complicated and relied on the results of Spagnolo con-
cerning G-convergence. Shortly afterwards direct arguments were sug-
gested. Among them are the method of compensated compactness by
Tartar, and the method of asymptotic expansions by Bachvalov, Ben-
soussan, Lions and Papanicolaou. By the probabilistic approach, Frei-
dlin obtained earlier the homogenized matrix for a non-divergent equa-
tion. In this note we use the two-scale convergence technique to find
the homogenized matrix by considering the flux term. It should be
noted that the consideration of the two-scale limit of flux is more natural
than applying the test function ¢(z)+e¢(z, £) on the weak-formulation.
Proposition 5 deals with a theory to find the limit of flux term.

2. Two-scale convergence for random variables

Before we define the two-scale convergence for random variables, we
briefly review the two-scale convergence for periodic functions.

A common (or, maybe, the quickest) way for homogenization for par-
tial differential equations with periodic coefficients is to use the formal
asymptotic expansion method. That is to say, in order to find the precise
form of the homogenized differential equation, we postulate the following
series expansion for the solution v°:

) o =Vele, D) + Vil D)+ ePale, D)+

where each term V;(z,y) is periodic in Y = [0, 1]".
Once we find Vy(z,v), Vi(z,y), Vo(z,y), -+, we let y = . This will
give us an expansion for v®:

vf = W)(xay) + €V1($7y) + €2V2($,y) +oee ly:-’- )

which is a series solution of the given differential equation. Unfortu-
nately, we may not be able to find all of V;(z,y)’s, and they may not

exist at all. Even if they exist, we can not guarantee the convergence of
the series. In the case when we get the first term Vy(z,y) or the second
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term Vi(z,y), we can regard Vy(z,Z) (or Vo(z, ) + eVi(z, £)) as the
solution v if € > 0 is small enough.

We substitute the expansion (1) into the original differential equation
to get the homogenized differential equations. Then in order to justify
this formal procedure we find an energy estimate which is usually very
complicated. That is, this technique involves with two steps: the formal
derivation of the cell and the homogenized equation, and justification
by the energy method. Because this procedure can be repeated as long
as we use a formal expansion and in some cases it is not easy to work
out the energy method, it is meaningful to have a machinery to combine
these two steps in one - the two-scale convergence method is designed
to perform these steps at once. In fact, the two-scale convergence is a
(special kind of) weak-formulation. Formally, as ¢ — 0 in (1),

v = %(CB,E)+€V1(w,§)+521/2(x,§)+...
- Vo(z,9) +0+ 0+ = Vy(z,y).

We justify this formal convergence as follows. Multiply both sides of (1)
by a test function ¢(z,y) (which makes the boundary term zero when
we apply integration by parts) and integrate it to have

x
E —
(9@ ) g
Suppose this converges to the one we expected:
. € €T i
2) i (05,90, 2)) o = Voot sy

We call this convergence the two-scale convergence. Hence the two-
scale convergence method is in some sense a machinery to find a hidden
variable. By finding it, we want to understand the solution v¢ as a
special case of the limit.

Fortunately, the two-scale convergence is not far from our purpose.
It is clear from the definition that the two-scale convergence is stronger
than the weak convergence

lim (%, @) 2(5) = (v, @) 12(s), V¢ € L2(S)

(note that the second factor of each inner product is fixed), but weaker
than the strong convergence

lin(l) (V% W) 25y = (v, W) 25y, YW —we L%(9)

(note that the second factors of the inner products have been changed).
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From the fact that periodic functions can be regarded as functions
on tori, tori may be replaced by any compact Riemannian manifolds.

Hereafter, S represents an open domain in R™ containing the origin
and Y is a compact oriented n-dimensional Riemannian manifold with
volume 1 - this restriction is just for the sake of Stokes’ theorem. We

K3
fix yo € Y, and we identify R® = T, Y, where T,,Y is the tangent
space of Y at yg. For any ¢ € S, we denote expyo(%_-i(:z:)) by e*/¢, i.e.,

L expy, (i(x)), where exp,, denotes the exponential function at
the point yg.

DEFINITION 1. A sequence {u.} € L?(S) is said to be two-scale con-

vergent to a limit Up(x,y) € L?(S x Y) (we denote it by u, 2, Up) if
for any test function ¢(z,y) € C§°(S x Y'), we have

<us,¢($, ex/€)> — (Uo, ¥) 12(5xv)-

L*(S)

PROPOSITION 2. For ¥(z,y) € L*®(S;C(Y)), we have

i (. 77)

e—0

L2(8) = ” Y ”L2(S'><Y) .

PROOF. We quote some arguments from [1] in which the measurabil-
ity of ¢(z,e®/¢) (1 is a Caratheodory-type function) is justified. From
the fact that the difference can be considered as follows

HQP(:z,e””/E) 28 19l 2 (sxy)

- (Hw(:p,ew/f) ‘_ ¢"<m’ex/€) L2(S))
+ ([ (2 e || = It zgsiony)
+ (nll = Il o) )
it suffices to show that the step functions of the type ¥n(z,y) = 3. ¥(z,

vi)xi(y) satisfy the assertion and they converge strongly to ¢ in L?(S;
C(Y)). In fact, by Birkhoftf Ergodic Theorem, we have

oz, °) i (0504, o)) )

— || ¥n llz2(sxY) -

lim ’ = ’
e—0 L2(S)

L2(8)
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From an elementary measure theory, we know that for each fixed z,
Y(z,-) is approximated by ¥y (z, -) with respect to sup-norm in the com-
pact manifold Y. Also, by Lebesgue Dominated Convergence Theorem,
we can show that 1, converges strongly to v in L?(S; C(Y)). O

The following theorem is a corner stone which is useful for the two-
scale convergence of the parabolic equations on perforated domain and
implies the compactness theorem:.

THEOREM 3. (Two-scale convergence with parameter) Suppose that
{ue} is a bounded sequence in L*([0, 00); L?(S)). Then there is a subse-
quence {ue,} of {uc} and a function Uy(t, z,y) € L*([0, 00); L*(S xY))
such that for any ¥(t,z,y) € L' ([0,00); C$(S x Y))

. o z/e; _ &
tim [ (e () ol ), de= [ 000 9Oy

ProOF. We define F.(¢) = f0°°<u5,1b(:c,e$/5))Lz(S)dt and D = L?
(8;C(Y)). There is a C > 0 such that |[u||Leo(j0,00):22¢5)) < C. Since
¢ € L1 ([0,00); D) and

Fel)| <[ Iz [[ott,z, )

<0 [ "max s @t = O T8Ol
0 yey 0

L2(5)

we have F. € (L'([0, oo);D)),. So a subsequence {F¢,} is weak*-
convergent to some To € (L'([0, 00); D))I. Hence for any 9 in L([0, 00);

D), we have
o (tze=)|| , . <@ b,

L%(S)
and we get the following by the Dominated Convergence theorem

dt

1 < z/e;
| Tol) |= Jim, | Fo,(9)] c/ 11msupH¢ (62| s

= [T 1900 s
Since L1(]0,00); D) is dense in L!([0,00); L2(S x Y)), it follows that
Yo € (L}([0,00); L3(S x Y)))'.
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By the Riesz Representation Theorem, we have

T0(¢) = \/0 <U0(t)’w(t)>L2(SXY) dt
for some Uy € L™ ([0, o0); L2(S x Y)) Therefore

] = z/ J =1 pey
tim [, (2), 0t 6750) e = lim Fe(w) = To(w)

- /0 {Tot), 9(0) 2 gy -
i}

COROLLARY 4. (Compactness Theorem) Any bounded sequence {u. }
in L?(S) has a two-scale convergent subsequence.

We define the divergence operator and the curl operator on L2(S).
For a vector field 5= (p1,p2, -+ ,pn) € L2(S), we define divp and curlp
as following:

divp = Op1 +Oopa + - + Onpn
(curlp);; = Ojpi — Oip; ford,j=1,...,m,
where each 0; represents the i-th partial derivative in the distributional
sense. Define

H3i(S) = {peL*S)":divpe L*S)},
{Fe2(S)" : curl e L(sy"n-D/2),

T
8 b=
d

&
Il

PROPOSITION 5. (i) Let {uc} be a bounded sequence in H'(S). Then
there exist Uy € H'(S) and Uy (z,y) € L*(S; HY(Y)) such that, up to
a subsequence, {u.} two-scale converge to Up(z) and {Vu.} two-scale
converge to VUp(z) + VUi (z,y).

(ii) Suppose {p.} is bounded in H}, (S), that is, {p.} and {div p.}
are bounded sequences in L%(S)", in L*(S), respectively. Then there
is a subsequence {p¢;} of {P:} such that {p¢;} two-scale converges to
Py(z,y) and div De; 2, div Po(zx,y) + divy Py (z,y), for some Py(z,y),
Pi(z,y) € L*(S x Y)" with div, Py = 0.

(iii) Suppose {p.} is bounded in H} ,(S), that is, {p.} is L%(S)"-
bounded and {curl p.} is L2(S)™"=1/2_pounded, then there exist Py (z,
v), Pi(z,y) € L2(S x Y)" and a subsequence {P:,} such that {p;,} two-
scale converge to 130 and {curl ﬁsj} two-scale converges to curl ]30 +
curlyP. Moreover, Py € ker(curly).
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PRrOOF. We prove the second fact, and the proof of the others can be
carried out similarly. By the assumptions, we have a subsequence, say
{p:} again, such that for any form ¥ € C§°(S x Y)", ¢ € C°(S x Y),

<ﬁe’ e, em/€)>L2(S)n
<div Pe, Pz, ex/5)>

Py(z,y) € L2(S x V)", ¢(z,y) € L*(S x Y). Since — div is the adjoint
operator of V, we have

e(div 5, ¢(a,e”)) o= (7, eVa0(e, /%) + Vy (2, e7/%))

— (P, ¥) L2(sxy)n

L2(S) - <Cv ¢>L2(S><Y)v

L2(S)

By passing to the limit in the equation above we get div, By=0. Next,
for ¢ € C§°(S x Y) such that V, ¢(z,y) = 0, we have

<ﬁ€,vm¢(w7ez/e)> - <ﬁ0av¢>L2(S><Y)"

= —((,0(=,9))L2(sxv):

L2 (S)n

It follows from this fact that (¢ — div Py, ¢(z, Y)) 12(sxy) = 0 for any ¢ €
C§°(S x Y) such that Vy, ¢(z,y) = 0. Hence { —div Py € (ker Vy)l. We
observe that (ker Vy)J‘ C Im (divy). Indeed, for any f € (Im (divy))l,
Vyf(¢) = — (f,divy ¢) =0, for all ¢ € C§°(Y). So f € ker V,. Hence
there exists Py(z,y) € L2(S x Y)™ such that ¢ — div Py = div, Py. That
is, ( = div P+ divy P,. This completes the proof. O

LeMMA 6. Let {A°(x)} be a sequence of n x n matrices such that
;l_r'% ||AE“L2(5)n2 = ” A “L2(S><y)n2

for some n x n-matrix A(z,y). Then, for any sequence {p.} in L?(S)"
that two-scale convergent to a limit Py(z,y) € L?(S x Y)", we have

A5, 2 Az, y)By(z, ).

PRrROOF. Let {B,(z,y)} be a sequence of n x n matrices such that
B, (z,y) are smooth with respect to x,y-variables and converge strongly
to A(z,y) in L?(S x Y)"Q. Then by Proposition 2 and the assumption,
we have

2
lim [|4° — By (z,¢/°) =1l A-B.|
£ —

2
2(gyn2 L2(SxY)? *
L3(s)



566 Hee Chul Pak

Hence as n goes to infinity, we obtain lim lim || A° — By (z, €*/¢)

n—o00 e—0

LQ(s)nz
= 0. Let {p-} be a sequence in L2(S)™ that two-scale converge to a limit
Py(z,y) € L*(S x Y)™. For any ¥(z,y) € C§°(S X Y)", we have

€ ~ z/e _ z/e\ = /e
(A @pe(e) (™)) |, o~ (Bale e/ Ipe(e) ¥ (z,e70%))
= ({4°@) - Balz, /%) } (), (w,¢"1%))
Passing to the limit as £ goes to zero yields

m (4°(@)7(2), Y(,¢7*)) | o (BuPo¥) | oy

li
e—0

L2(S)n

L2(S)" ’

< Constant li L HAE — By(z,€*°)
£—

L2(s)n? ’
Letting n go to infinity we get the desired result. O

3. Linear second order elliptic equations

Let S be a bounded open set of R™. Let f be a given function in
L?(S). We consider the following linear second order elliptic equation

(3) —div (A (ew/e) Vue) =f inS
us = 0 on 95,

where A(y) is an n x n matrix defined on Y and Y is a compact oriented
Riemannian manifold, such that there exist two positive constants o and
B with 0 < a < (3 satisfying

N
alEP< Y Ay <BlEP forany € RY,

ij=1
and each Ayj (-) is measurable with

lim 1A (€™ L2(s) = 1A W)l L2(s%v)-
We define the flux vector field 7. by p.(z) = A(ez/ €) Vue(x), so we have
4) —divp. = f.
From energy estimates on (3),

2 z
af| Vet |25 < <A(e ) VuE,Vu5>L2(S)

= (f, Vue)2(s) < I fllz2(s) [ Vuell L2 sy
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we observe that {u.} is bounded in H*(S), and so {p.} and div{p.} are
bounded in L?(S)", in L?(S), respectively. Hence applying Lemma 6
and Proposition 5, we have the two-scale limits:

(5) — div pp — divy p1 = f

(6) Po = A(y)(Vuo + Vyu)

(7) — divypp = 0.

We integrate (5) over Y to get

(8) —div / A(y)(Vup + Vyu) dy = f.
Y

THEOREM 7. (Existence and Uniqueness) There are the unique so-
lutions ug € HE(S) and u; € L?(S; HY(Y)/R) of the two-scale homoge-
nized system (8) and (7).

PROOF. A variational formulation associated to (8) and (7) is given
by

| [ AG)(Tuo(e) + Vy1(2,1)) - (Fo0(e) + Dya(z,v) dady
SJY

= / f(2)¢(x)dz.
S

We define a bilinear form B on the Hilbert space H}(S) x L*(S; HY(Y)/
R) with the norm ||Vu0||L2(S) + ||Vyu1||L2(SXy);

B((uq, u1), (0, #1)]
E/S/YA(Z/)(Vuo(m)%—Vyul(x,y)).(V¢0(m)+vy¢1(w7y)) dedy.
Then it is clear that B is coercive since

B((do, 1), (d0,61)] > o /S /Y (Véo(z) + Vyba ()P dedy
- 4 /S (Vo) do+ [ S/YIVyul(r,y))lz ddy.

Hence, by virtue of Lax-Milgram lemma, there exists a unique solution

of the two-scale homogenized system (8) and (7). O

We apply separation of variables ui(z,y) = @(y) - Vug(z), for some
J(y) € HY(Y)" and so (6) reads 5y = A(y) (I + (Vyu')')T (y)) Vug. De-

fine Xa(y) = AW) (I+(V,@)" ) and & = f, Xu(y)dy = (Xa)y-
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Then from (8), we get the homogenized equation;

(9) — div AVug = f.
Also we have
(10) ~divy X4 = 0,

which means that each column of X4 is divergence free.
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