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AN ASYMPTOTIC FINITE ELEMENT METHOD FOR
SINGULARLY PERTURBED HIGHER ORDER ORDINARY
DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION
TYPE WITH DISCONTINUOUS SOURCE TERM

A. RAMESH BABU AND *N. RAMANUJAM

ABSTRACT. We consider singularly perturbed Boundary Value Problems
(BVPs) for third and fourth order Ordinary Differential Equations{ODEs)
of convection-diffusion type with discontinuous source term and a small
positive parameter multiplying the highest derivative. Because of the type
of Boundary Conditions(BCs) imposed on these equations these problems
can be transformed into weakly coupled systems. In this system, the first
equation does not have the small parameter but the second contains it.
In this paper a computational method named as ” An asymptotic finite
element method ” for solving these systems is presented. In this method we
first find an zero order asymptotic approximation to the solution and then
the system is decoupled by replacing the first component of the solution
by this approximation in the second equation. Then the second equation
is independently solved by a fitted mesh Finite Element Method (FEM).
Numerical experiments support our theoritical results.
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1. Introduction

Singularly Perturbed Differential Equations(SPDEs) appear in several branches
of applied mathematics. Analytical and numerical treatment of these equations
have drawn much attention of many researchers [?, ?, ?, ?, ?|. In general, classi-
cal numerical methods fail to produce good approximations for these equations.
Hence one has to look for non-classical methods. A good number of articles
have been appearing in the past three decades on non-classical methods which
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cover mostly second order equations. But only a few authors have developed
numerical methods for higher-order differential equations [?], [?}-[?].

Singularly perturbed higher-order problems are classified on the basis that
how the order of the original differential equation is affected if one sets £ = 0.
Here ¢ is a small positive parameter multiplying the highest derivative of the
differential equation. We say that a Singular Perturbation Problem (SPP) is of
convection- diffusion type if the order of the DE is reduced by 1, whereas it is
called reaction-diffusion type if the order is reduced by 2. In this paper the first
type is considered.

For the analytical treatment of SPBVPs for the higher-order non-linear Or-
dinary Differential Equations(ODEs) which have important applications in fluid
dynamics, one may refer [?, ?]. For the higher-order problem if the order of
the equation is even, then FEM based on standared C™~! splines on a shishkin
mesh is reported in [?].

In this paper, we consider the following two problems: Fourth Order Singu-
larly Perturbed Boundary Value Problem [?].

Find y € C?(Q) N C3(Q) N C*Q~ UQT) such that

—ey™”(z) + a(z)y" (z) + b(z)y" (z) — c(z)y(z) = —f(z),z € (A~ UQH)(LI)
y0) =p, y()=¢q ¢'0)=-r y'(1)=-s (1.2)

where a(z), b(z) and ¢(z) are sufficiently smooth functions satisfying the follow-
ing conditions

a(z) > o, a>0, (1.3)

b(z) >0, (1.4)

0>c(z)>~y, 7>0, (1.5)
a—0y>n>0,0>1is arbitraryly close to 1, for some 7. (1.6)

Third order Singularly Perturbed Boundary Value Problem (7).
Find y € CY(Q) N C*(Q) N C3(Q~ U Q™) such that
—ey’"(z) + a(z)y" (2) + b@)y (3) + c(z)y(z) = (&), x € (R~ UQY), (L)
y0 =p yO) =g, y(1)=n (1.8)
where a(z), b(z) and c(z) are sufficiently smooth functions on Q) satisfying the
following conditions

a(z) >a, a>0, (1.9)
b(z) =2 0, (1.10)
0>c¢(z)>-y, v>0, (1.11)

a—6y>n>0, forsome § arbitrarily close to 2, for some n. (1.12)

For both the problems defined above, O~ = (0,d), QF = (d,1), 2 = (0,1)
and ¢ is a small positive parameter. It is assumed that f is sufficiently smooth
on Q\ {d}. Further it is assumed that f(z) and its derivatives have right and
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left limits at the point d. It is convenient to introduce the notation for jump at
d for any function w as [w}(d) = w(d+) — w(d-).

Motivated by the papers [?], [?], a computational method is suggested for the
above problems. Because of the type of the boundary conditions imposed, one
can transform the problem in to a weakly coupled system of differential equa-
tions. Then one obtains a zero order asymptotic expansion approximation for
solution of the problem. Then the first component of the solution appearing in
the second equation is replaced by its zero order asymptotic expansion approx-
imation. Then the system gets decoupled. Then the second equation can be
solved independently. Infact, the second equation was solved by earlier authors
[?]-[?] by using FMM (Fitted Mesh Method) on Shishkin mesh and the order of
convergence obtained by them is of O(¢ + N~!In N). In the present paper, we
apply FEM on Shishkin and Bakhavlov-Shishkin meshes and obtain higher-order
convergence for small values of parameter ¢.

Through out this paper, C' denotes a generic constant that is independent of
the parameter € and N, the dimension of the discrete problem.

2. Asymptotic expansion approximation

As mentioned above zero-order asymptotic expansions for the solutions of
the problems (??-77) and (??-?7) are obtained. The SPBVP (??-7?) can be
transformed into an equivalent problem of the form

1y (z) —y2(z) =0, z€Q, (2.1)
—eyy (z) + a()yp () + b(z)pa(x) + c(z)ys(z) = f(z),2 € Q- UQT,

nO)=p, vi(l)=q 30 =r ) =s, (2.2)
where § = (y1,%2)7, y1 € CH(Q) N C3(Q) N CHQ™ UQT) and
Y2 € COQ)NCHQ)NC?HOQ~ U Q).
Similarly the SPBVP (??-7?) can be transformed into

{yi (@) = 92(2) =0, zeQU{1}, (2.3)
—eyl (z) + a(@)yh(z) + b(x)ya(2) + c(@)p(z) = f(z),2 € Q- U O,

a1 (O) =p, y2(0) =q, ?Jz(l) =T, (24)
where § = (y1,92)7 , 31 € CH(Q) N C*Q) NC¥Q~ UQT) and
y2 € CU) NCHO) N C2 Q- U QY).

Remark 2.1. Here after, the above systems are only considered instead of
BVPs (?7-7?) and (??-77). The conditions (?7?) and (??) ensure that the above
systems are quasi-monotone ( refer [?] and [?] ). The conditions (??) and (?7)
are sufficient to establish maximum principle for problems (??-7?) and (??-77)
respectively. This, in turn, can be used to derive stability result, error estimates
etc.,



1060 A. Ramesh Babu and N. Ramanujam

Motivated by [?] we can construct an asymptotic expansion approximation
for solution of (77-77).
Find up1(z), uoa2(z) such that

—ugy (z) — uoa(z) = 0,

a(z)upy(z) + b(z)uoz(z) + c(x)uni(z) = f(z), =€Q UQT,
uo1(0) =p, wo1(d—) = un(d+), u02(0) =

upy(d—) = upy (d+),  uo2(d—) = ug2(d+), u01(1) =q.

(2.5)

That is, in particular find ug; on Q such that

a(z)ug] (z) +b(@)ugy (z) — c(z)uor(z) = —f(z), z€Q UQT,
um(()) =P, ’U,()l(d—) = u01(d—+—), Ugl(0> =r, (2.6)
upi(d—) = upi(d+), wugi(d-) =ug(d+), un(l) =g

Then (y1,4s, Y2,45) is defined by

’ULOl(.’E),.'E e U {0},
Y1,0s(z) = ug1 () + § vRo1(2), z € QT U {1},
vro1(d—) = vroi(d+),

and
vroz(z), z € Q~ U {0},
Y2,0s(T) = ug2(z) + { vRo2(z),z € QT U {1},
vro2(d—) = vRoz(d+),
where the terms vrg1, VRo1,vroz and vgos can be defined following ideas pre-
sented in [?]. Similarly one can construct an asymtotic expansion for the solution

of the BVP (7?7 - 77).
Find ug1(z), uo2(z) such that

up1 () —uo2(z) =0, z € (QU{1}),
a(z)uho(z) + b(z)uge(z) + c(x)uoi (z) = f(z),z € QU QT U{1}), (2.7)
u01(0) = p, uo1(d—) = uo1(d+), uo2(d—) = uo2(d+), uo2(0) = q.

That is, in particular find ug; on © such that

{a(w)uaq(x) 4@y (o) +e@lun(s) = fl2) 2 € Q- U@V,

u01(0) = p, up1(0) = g, ugy(d—) = up1(d+), uor(d—) = uo1(d+).
That is,

a(z)ugy(x) + b(z)uoz(z) = f(z) — c(z)un(z), z € Q- U (2T U {0}), 2.9)
u02(0) = g, uoa(d—) = up2(d+). .
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Define (y1,as,Y2,as) 88
vLm(JI ze U {0},
Y1,as(T) = uo1(2) + { vroi(z), z € QTU{1},
vro1(d—) = vro1(d+),

),
),

and
’l)L()g(iI)), reQ U {0},
Y2,0s(T) = u02(x) + { vRoo(z), z € QHU{l},
vro2(d—) = vro2(d+),

where ug1, uo2 are defined above and the boundary layer terms vro01, ¥ro1, YLo2
and vgpe can be defined. Using the maximum principle and hence the stability
result, the authors [?, ?] proved the following result.

Remark 2.2. One can see that there is a strong layer at = 1 and a weak layer
at x = d for the solution component yo

Theorem 2.3. The zero order asymptotic expansion (Y1,qs, Y2,05) defined above
for the solution (y1,y2) of the BVP (?? - ??) satisfies the inequality

| yi(m) - yz‘,a,s(l') 'S Ce,x € Q, 1=1,2.
In particular, we have
[ y1(z) — uoi(z) |< Ce.

Remark 2.4. Similar statements are true for the BVP (77 - 7?) [?]. As we do
not need the above boundary layer terms, we have not given their explicit forms
here.

3. Some analytical and numerical results for SPBVP for second
order convection-diffusion equation with a discontinuous source
term

We consider the BVP

e (@) +a(e)ys () Hbapi(e) = (@), se @ UQY, g,
10 =g u(1)=r
where f*(z) = f(z) — ¢(x)uo1(z) and uo; is the solution of the initial value
problem (77).
3.1. Analytical Result.

Theorem 3.1. If (y1,y2) and y3 are solutions of the BVPs (?7-77) and (?7?)
respectively and ug, is the solution of the reduced problem (7?), then [7]

[y2(z) — y3(2)| < Ce, z€Q.

Remark 3.2. A similar statement can be made for the BVP (?2-77).



1062 A. Ramesh Babu and N. Ramanujam

3.2. Numerical Results. There is a good literature in the ares numerical
solution for SPPs for second order ODEs with non-smooth data [?]. Consider

the convection - diffusion problem (?7)
—eys’ (z) +a(z )1/2 (z) + b(z)ys (z) = f*(z), 2 € (Q~ L AY),
y5(0) =y3(1) =
where f*(z) = f(z) — c(x)uo1(z). For the sake of completeness we now describe

the Streamline-Diffusion Finite Element Method (SDFEM), as presented in [?].
A standard weak formulation of (??) is: Find y} € V such that

(3.2)

B(ys,v) := (sygl,'v') ~+ (aygl,v) + (byz,v) = (f*,v), forallveV (3.3)

where V = H} () denotes the usual Sobolev space and (.,.) is the inner product
on Ly(2). As in [?], we shall consider QY = {zg,z1,++,zn} to be the set
of mesh points z;, for some positive integer N. For i € {1,2,---, N} we set
hi = z; — z;—1 to be the local mesh step size, and for i € {1,2,---,N} let
hi = (hi + hi+1)/2. For the discretization of (?7) we use streamline-diffusion
method, we get

By(y3,v) = (ey;/, V') +(ay;',v)+
Z habiys ;v; + Z / ~ey; +ay; +bys)av,
=1 Ti--1

filv) = (f*av)-l-zz_l f 5z-f*a'u

and we choose d = z /9 and take, f*(d) = f;,/Q = (f(*N/Q)—l + f("‘N/2)+1)/2. The
parameter §; is called the streamline-diffusion parameter and will be determined
later. Now the discrete problem is: find y, € V" such that

Bi (5, vh) = fii(vn) Vo € V" (3.4)

and basis functions of V* are given by

z_;f:_l-, T € [Ti-1,Ti,
¢i(z) = { 5 T € 30, 3an), (3.5)
0) z ¢ [$i_1,$i+1]-

The solution y3, of (77) will represent an approximation to the exact solution
y5 of the problem (?7?). The corresponding difference scheme is

LNZU§ o {—é(yz,i}ﬁ;yz,i _ y2,rhyi2,i~1) + ai(%}l&i)_;_
1t * o ]
BT by = (8,
Yso = Yin =0, 3.7)

(3.6)
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where 95 ; = y3,,(%:), i=1,2,..,N—1and
xi+1
a; = hip1 / (04101 + 6i10° G4 1 67 + 0ir10b¢i167),
T3,
1

B; = —h; (a;_¢; + 6:0°¢;_, ¢} + b;abgi_19)),

Ti—1 .
i+l

T
% = hib; +/ é;abg} + / di10bg;.

Ti-1 Zq
The choice of the parameter d; is determined by the structure of the coefficient
matrix of the scheme ( 77 ) and b; = %illeLm[w,-,wm]a a = ||a|| Lo, - Naturally, if
the local mesh step is small enough, then the standard Galerkin method can be
applied, so it is possible to choose §; = 0. In other case, we shall choose §; from
the condition ¢;_1 = 0. Finally we have

07 hz S "[“!""5“?[“““7
6i - o ’ . 2400 47 >y -1 2500 (3-8)
”/ a¢i¢i-1(/ (a*¢idi_1 +abdidi_1))~ ", hi> W-

For the discretization described above we shall use a mesh of the general type
introduced in {?], but here adapted for the layers at z = d and = = 1.
Let N > 4 be a positive even integer and

. [d € . [1—-d ¢
01=m1n{§,ﬁ'rolnN}, agzmln{T,B—TolnN}, To > 3.

Remark 3.3. To acheive the higher order convergence the proof of the theorem
demands that 75 > 3.

Our mesh will be equidistant on Q,, where
Qs =(0,d—01)U(d,1~02)
and graded on Qg where
Qo =(d—01,d)U(1—09,1).
First we shall assume o1 = 02 = 7o¢/BIn N as otherwise N —1 is exponentially
small compared to . We choose the transition points to be
Tna=d—01, Tnp=d, Tanag=1-02

Because of the specific layers, here we have to use two mesh generating functions
1 and ¢, which are both continuous and piecewise continuously differentiable
and monotonically decreasing functions and

¢1(1/4) =InN, ¢1(1/2) =0
02(3/4) =In N, oa(1) = 0.
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The mesh points are
( 44
N

d-—EgOl(ti), ’LIN/4+1,,N/2,
I, = ’8

4
d+ (1 ~d=02)(i=N/2), i=N/2+1,..,3N/4,

Zd-o1), i=0,..,N/4,

1- %swg(ti), i=3N/4+1,..,N,

\

where t; = i/N. We define new functions ¢; and v by
;i =—-Iny;, i=1,2.

There are several mesh-characterizing functions + in the literature, but we shall
use only those which correspond to Shishkin mesh and Bakhvalov-Shishkin mesh:
¢ Shishkin mesh

’l/h(t) — e—2(1—2t)LnN, 7/)2(t) — e—4(1—t)lnN’
o Bakhvalov-Shishkin mesh
i) =1-2(1-N"H(1-2t), tolt)=1-41-N"")(1-1).

The set of interior mesh points is denoted by 2 = QY \ {zn/2}. Also, for the
both meshes, on the coarse part Q, we have

h; <CN7L
It is well known that on the layer part of the Shishkin mesh {7
hi <CeN~'InN
and of the Bakhvalov-Shishkin mesh we have

ﬂN maxlwllexp<ﬁ(d Ti_ 1)) i=N/4+1,..,N/2,
T0E

hi <
ﬂ JeN~ max|¢2lexp<ﬂ€(1—:nz 1)) i=3N/4+1,..,N
70

and

m[a‘

<CN 'max|¢' | <C.

Theorem 3.4. If y3 and y3,(z:) are the solutions of (2?) and (??) respectively,

then

i i CN=2In*N, for Shishkin mesh
w2 (i) —van (@)l < {C’N‘Q, for Bakhvalov-Shishkin mesh, t=1,2,...,N.
Proof. Refer [?]. O
Remark 3.5. By suitable transformation a BVP of the type (??) with non-
homogeneous BCs can be transformed into another BVP with homogeneous BCs

[?]. Hence before applying the above FEM to any BVP having non-homogeneous
BCs, the problem should be transformed into a BVP with homogeneous BCs.
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4, Error Estimate

Theorem 4.1. Let (y1,y2) be the solution of (27-77). Further let y3;, (z:) be the
numerical solution of (?7) after applying the FEM to it. Then

C(e + N21n® N), for Shishkin mesh

i) ~Yar (%) |<
| a(@s)—van(z) I< {C(e + N~2), for Bakhvalov-Shishkin mesh,i = 1,2, ..., N.

(4.1)
Proof.
| y2(z) — () |

= | ya(®:) — y3(zs) + 95 (2:) — y3p,(24) |

< yalme) — y3(@a) | + | 93 (2) — g3 (i) |

< JCE+N ~21n? V), for Shishkin mesh

~ | C(e + N~?), for Bakhvalov-Shishkin mesh,i = 1,2, ..., N,
by Theorem ?7 and Theorem ?7. O

Remark 4.2, A similar statement is true for the BVP (?? - ?7). In [?, 7] the
authors applied FMM on Shishkin mesh and obtained an error estimate of order
O(e + N~ In N). From the above result, it is obvious that the present method
has improved the earlier results.

5. Numerical Experiments

In this section we experimentally verify our theoretical results proved in the
previous section.

Example 5.1. Consider the BVP

e 0.7 <05
- 2 (@) + 4y () ~ 2y(x) = 0 T 7 €(0,1), (5.1
ey (2) + /(@) + 40/ (@) - 2(c) {_0.6, a5 TEOD, (6
y(0) =1, ¢ (0)=0, ¢(1)=0, (5.2)
and the corresponing system
0.7, z<0.5

~41(2) +v2(2) = 0, — ey (z) +25(2) + dy2(2) — 242 (2) = {_0.67 2> 05,
(5.3)
y1(0) =1, 12(0)=0, ya(1)=0. (5.4)

For our tests, we take ¢ = 10716, which is sufficiently small choice to bring
out the singularly perturbed nature of the problem. We measure the accuracy in
the discrete maximum norm || . ||o . The rates of convergence 7V are computed

using the following formula:
EN
= logy (Eﬁ) )
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where EN =|| uj, — uéh lloo and u} denotes the piecewise linear interpolant of u.
In Table ??, we present values of EN,rN for the first derivative of the solution
of the BVP (77 - 7?) for Shishkin and Bakhavlov-Shishkin meshes. The Figure
77 depicts the first derivative of the numerical solution of the BVP (?7 - 7?) for
Shishkin mesh.

We compare the values of EN, " for the first derivative of the solution of
the same BVP (?? - 77) for Shishkin mesh using the standard upwind scheme
adopted in [?]. From these tables, it is obvious that the scheme presented in this
paper performs very well.

Example 5.2. Consider the BVP

. 0.7, <05
P + 4y 4 (z) = ) = 5.5
ey (@) Y@+ 4 () {0.6, z > 0.5, (5:5)
y0)=y(1) =1, y"(0)=y"(1)=0, (5.6)
and the corresponing system
0.7, <05
~1(z) = 1a(2), — ev3(2) + 4ya(2) + dya(w) = {_0‘6’ z>05 07
n0)=1(1)=1, y(0)=y(1)=0. (5.8)

The Table 77 presents the values of EV, 7Y for the second derivative of the
solution of the BVP (27 - ??). The graph of the second derivative of the numer-
ical solution of the BVP (7? - ??) is given Figure 7?.  The numerical results
are clear illustrations of the convergence estimates of both type of meshes.

TABLE 1. Values of EN and rV for the first derivative of the
solution of the BVP (?? - 77?).

N Shishkin mesh Bakhavlov-Shishkin mesh
EXN rV EX riv

32 |6.6712¢-03 | 1.0516 | 5.4925e-03 0.7709

64 | 3.2184e-03 | 0.8904 | 3.2187¢-03 0.8903
128 | 1.7361e-03 | 0.9463 | 1.7364e-03 0.9463
256 | 9.0093e-04 | 0.9734 | 9.0111e-04 0.9734
512 | 4.5882e-04 | 0.9868 | 4.5893e-04 0.9868
1024 | 2.3151e-04 | 0.9926 | 2.3157e-04 0.9934
2048 | 1.1632e-04 - 1.1392e-04 -
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TABLE 2. Values of EN and 7V for the second derivative of the
solution of the BVP (77 - 77).

N Shishkin mesh Bakhavlov-Shishkin mesh
EXN Y EY riv

32 | 2.4380e-03 | 1.0252 | 2.2738e-03 0.9246

64 | 1.1979e-03 | 0.9704 | 1.1979e-03 0.9700
128 | 6.1134e-04 | 0.9871 | 6.1135e-04 0.9875
256 | 3.0840e-04 | 0.9940 | 3.0841e-04 0.9940
512 | 1.5484e-04 | 0.9971 | 1.5484e-04 0.9971
1024 | 7.7572e-05 | 0.9986 | 7.7572e-05 0.9986

2048 | 3.8823e-05 - 3.8823e-05 -
[ o2’
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FIGURE 1. Graphs of the first derivative of the numerical
solution of the BVP (?? - ??) for various values of € with N =
512.
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