• Title/Summary/Keyword: second mean curvature

Search Result 37, Processing Time 0.029 seconds

ON SOME GEOMETRIC PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE

  • Ali, Ahmad T.;Aziz, H.S. Abdel;Sorour, Adel H.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.593-611
    • /
    • 2016
  • This paper is concerned with the classifications of quadric surfaces of first and second kinds in Euclidean 3-space satisfying the Jacobi condition with respect to their curvatures, the Gaussian curvature K, the mean curvature H, second mean curvature $H_{II}$ and second Gaussian curvature $K_{II}$. Also, we study the zero and non-zero constant curvatures of these surfaces. Furthermore, we investigated the (A, B)-Weingarten, (A, B)-linear Weingarten as well as some special ($C^2$, K) and $(C^2,\;K{\sqrt{K}})$-nonlinear Weingarten quadric surfaces in $E^3$, where $A{\neq}B$, A, $B{\in}{K,H,H_{II},K_{II}}$ and $C{\in}{H,H_{II},K_{II}}$. Finally, some important new lemmas are presented.

TUBES OF WEINGARTEN TYPES IN A EUCLIDEAN 3-SPACE

  • Ro, Jin Suk;Yoon, Dae Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 2009
  • In this paper, we study a tube in a Euclidean 3-space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature.

  • PDF

ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ 4-SPACE FORMS

  • Firooz Pashaie
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.739-756
    • /
    • 2024
  • The ordinary mean curvature vector field 𝗛 on a submanifold M of a space form is said to be proper if it satisfies equality Δ𝗛 = a𝗛 for a constant real number a. It is proven that every hypersurface of an Riemannian space form with proper mean curvature vector field has constant mean curvature. In this manuscript, we study the Lorentzian hypersurfaces with proper second mean curvature vector field of four dimensional Lorentzian space forms. We show that the scalar curvature of such a hypersurface has to be constant. In addition, as a classification result, we show that each Lorentzian hypersurface of a Lorentzian 4-space form with proper second mean curvature vector field is C-biharmonic, C-1-type or C-null-2-type. Also, we prove that every 𝗛2-proper Lorentzian hypersurface with constant ordinary mean curvature in a Lorentz 4-space form is 1-minimal.

SOME CHARACTERIZATIONS OF CANAL SURFACES

  • Kim, Young Ho;Liu, Huili;Qian, Jinhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-477
    • /
    • 2016
  • This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.

ANCIENT SOLUTIONS OF CODIMENSION TWO SURFACES WITH CURVATURE PINCHING IN ℝ4

  • Ji, Zhengchao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1049-1060
    • /
    • 2020
  • We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterize the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces, which is different from the conditions of Risa and Sinestrari in [26] and we also remove the condition that the second fundamental form is uniformly bounded when t ∈ (-∞, -1).

TIMELIKE TUBULAR SURFACES OF WEINGARTEN TYPES AND LINEAR WEINGARTEN TYPES IN MINKOWSKI 3-SPACE

  • Chenghong He;He-jun Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.401-419
    • /
    • 2024
  • Let K, H, KII and HII be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface Tγ(α) with the radius γ along a timelike curve α(s) in Minkowski 3-space E31. We prove that Tγ(α) must be a (K, H)-Weingarten surface and a (K, H)-linear Weingarten surface. We also show that Tγ(α) is (X, Y)-Weingarten type if and only if its central curve is a circle or a helix, where (X, Y) ∈ {(K, KII), (K, HII), (H, KII), (H, HII), (KII , HII)}. Furthermore, we prove that there exist no timelike tubular surfaces of (X, Y)-linear Weingarten type, (X, Y, Z)-linear Weingarten type and (K, H, KII, HII)-linear Weingarten type along a timelike curve in E31, where (X, Y, Z) ∈ {(K, H, KII), (K, H, HII), (K, KII, HII), (H, KII, HII)}.

Classification of Ruled Surfaces with Non-degenerate Second Fundamental Forms in Lorentz-Minkowski 3-Spaces

  • Jung, Sunmi;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.579-593
    • /
    • 2007
  • In this paper, we study some properties of ruled surfaces in a three-dimensional Lorentz-Minkowski space related to their Gaussian curvature, the second Gaussian curvature and the mean curvature. Furthermore, we examine the ruled surfaces in a three-dimensional Lorentz-Minkowski space satisfying the Jacobi condition formed with those curvatures, which are called the II-W and the II-G ruled surfaces and give a classification of such ruled surfaces in a three-dimensional Lorentz-Minkowski space.

  • PDF

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.