TUBES OF WEINGARTEN TYPES IN A EUCLIDEAN 3-SPACE

  • Ro, Jin Suk (Seonggwang High School) ;
  • Yoon, Dae Won (Department of Mathematics Education and RINS Gyeongsang National University)
  • Received : 2009.04.29
  • Accepted : 2009.08.14
  • Published : 2009.09.30

Abstract

In this paper, we study a tube in a Euclidean 3-space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature.

Keywords

References

  1. C. Baikoussis and Th. Koufogiorgos, On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math. 68 (1997), 169-176. https://doi.org/10.1007/s000130050046
  2. D. E. Blair and Th. Koufogiorgos, Ruled surfaces with vanishing second Gaussian curvature, Monatsh. Math. 113 (1992), 177-181. https://doi.org/10.1007/BF01641765
  3. F. Dillen and W. Kuhnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), 307-320. https://doi.org/10.1007/s002290050142
  4. F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005), 10-21. https://doi.org/10.1007/s00022-005-0002-4
  5. F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space II, J. Geom. 84 (2005), 37-44. https://doi.org/10.1007/s00022-005-0015-z
  6. Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys. 49 (2004), 89-100. https://doi.org/10.1016/S0393-0440(03)00084-6
  7. Y. H. Kim and D. W. Yoon, On non-developable ruled surfaces in Lorentz-Minkowski 3-spaces, Taiwances J. Math. 11 (2007), 197-214. https://doi.org/10.11650/twjm/1500404646
  8. N. G. Kim and D. W. Yoon, Mean curvature of non-degenerate second fundamental form of ruled surfaces, Honam Math. J. 28 (2006), 549-558.
  9. Th. Koufogiorgos and T. Hasanis, A characteristic property of the sphere, Proc. Amer. Math. Soc. 67 (1977), 303-305. https://doi.org/10.1090/S0002-9939-1977-0487927-7
  10. D. Koutroufiotis, Two characteristic properties of the sphere, Proc. Amer. Math. Soc. 44 (1974), 176-178. https://doi.org/10.1090/S0002-9939-1974-0339025-8
  11. W. Kuhnel, Ruled W-surfaces, Arch. Math. 62 (1994), 475-480. https://doi.org/10.1007/BF01196440
  12. R. Lopez, Special Weingarten surfaces foliated by circles, to appear in Monatsh. Math.
  13. G. Stamou, Regelflachen vom Weingarten-type, Colloq. Math. 79 (1999), 77-84. https://doi.org/10.4064/cm-79-1-77-84
  14. D. W. Yoon, Some properties of the helicoid as ruled surfaces, JP Jour. Geom. Topology 2 (2002), 141-147.
  15. D. W. Yoon, On non-developable ruled surfaces in Euclidean 3-spaces, Indian J. pure appl. Math. 38 (2007), 281-289.