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FUNDAMENTAL TONE OF COMPLETE WEAKLY

STABLE CONSTANT MEAN CURVATURE

HYPERSURFACES IN HYPERBOLIC SPACE

Sung-Hong Min*

Abstract. In this paper, we give an upper bound for the funda-
mental tone of stable constant mean curvature hypersurfaces in hy-
perbolic space. Let M be an n-dimensional complete non-compact
constant mean curvature hypersurface with finite L2-norm of the
traceless second fundamental form. If M is weakly stable, then
λ1(M) is bounded above by n2 +O(n2+s) for arbitrary s > 0.

1. Introduction

Let M be a complete non-compact Riemannian manifold. The fun-
damental tone λ1(M) of M is defined as

λ1(M) = inf {λ1(Ω) : Ω ⊂M, Ω is compact} .
It can be characterized variationally as

(1.1) λ1(M) = inf

{∫
M |∇f |

2∫
M f2

: 0 6= f ∈W 1,2
0 (M)

}
.

To find λ1(M) or to estimate λ1(M) is a very important and interesting
problem in differential geometry. McKean [12] showed the following
famous theorem.

Theorem (McKean [12]). Let M be a complete simply connected
Riemannian manifold with sectional curvature bounded above by a con-

stant −κ2 < 0. Then λ1(M) ≥ (n−1)2κ2
4 .
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Let Hm be an m-dimensional hyperbolic space with constant curvature
−1. For a complete submanifold in hyperbolic space, Cheung and Leung
[7] obtained the following theorem.

Theorem (Cheung and Leung [7]). Let M be an n-dimensional com-
plete non-compact submanifold in Hm with the mean curvature vector
~H. If | ~H| ≤ α < n− 1, then

λ1(M) ≥ (n− 1− α)2

4
.

There are also upper bound estimates for the fundamental tone of a
complete submanifold in hyperbolic space.

Theorem (Candel [5]). Let M be a stable simply connected minimal
surface in H3. Then

1

4
≤ λ1(M) ≤ 4

3
.

Theorem (Seo [13]). Let M be a complete stable minimal hypersur-
face in Hn+1 with

∫
M |A|

2 <∞. Then

(n− 1)2

4
≤ λ1(M) ≤ n2.

Seo [14] also generalized his result to a complete minimal hypersurface
in Hn+1 with finite index. For a cmc-H submanifold in hyperbolic space,
Fu and Tao [11] showed the following.

Theorem (Fu and Tao [11]). Let M be an n-dimensional complete
non-compact orientable submanifold with parallel mean curvature vector
in Hn+p. If

∫
M |Φ|

q <∞ for q ≥ n, then

λ1(M) ≤ (n− 1)2(1− |H|2)
4

,

where Φ is the traceless second fundamental form of M .
In particular, if M is an n(≤ 5)-dimensional complete non-compact

weakly stable cmc-H hypersurface in Hn+1 with
∫
M |Φ|

d < ∞ for d =

1, 2, 3, then λ1(M) ≤ (n−1)2(1−|H|2)
4 .

Meanwhile, Barbosa and do Carmo [2] proved that any compact cmc-
H, H 6= 0, hypersurface in Rn+1 is weakly stable if and only if it is a
round sphere. This result was extended by Barbosa, do Carmo, and
Eschenburg [3] to a compact cmc-H hypersurface in space forms. Da
Silveira [15] studied complete non-compact weakly stable cmc-H sur-
faces in R3 and H3. In R3, he generalized do Carmo and Peng [6],
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Fischer-Colbrie and Schoen [9] as follows: Any complete non-compact
cmc-H surface is weakly stable if and only if it is totally geodesic. In
H3, the situation turns out differently: If |H| ≥ 1, then any complete
non-compact weakly stable cmc-H surface in H3 is a horosphere. How-
ever, there exists at least one one-parameter family of weakly stable
non-umbilic cmc-H embeddings if |H| < 1. Later, Cheung and Zhou [8]
proved that a complete non-compact weakly stable cmc-H hypersurface
in Hn+1, n = 3, 4, 5, with |H| > 1 is a compact geodesic sphere if the L2-
norm of the traceless second fundamental form is bounded. Not much is
known about complete non-compact weakly stable cmc-H hypersurfaces
for higher dimensions.

In this paper, we obtain an upper bound for the fundamental tone
of a complete non-compact weakly stable cmc-H hypersurface in Hn+1

with finite L2-norm of the traceless second fundamental form.

Theorem (Theorem 3.2). Let M be an n-dimensional complete non-
compact orientable cmc-H hypersurface in Hn+1 with

∫
M |Φ|

2 < ∞.
Assume that M is not a totally umbilical cmc-H hypersurface. Let
s > 0. If M is weakly stable, then

λ1(M) ≤ n2 + C4,

where C4 is a constant with C4 = O(n2+s). In particular, if n = 2, then
λ1(M

2) ≤ n2 = 4.

Note that there is no dimension restriction on M in the above theorem.

2. Preliminaries

Let M be an n-dimensional immersed orientable hypersurface in an
(n + 1)-dimensional Riemannian manifold N . Denote by ∇ and ∇ the
Levi-Civita connections of N and M , respectively. The second funda-
mental form of M is defined by, for all tangent vector fields X,Y ,

〈AX,Y 〉 = 〈∇XY, ν〉,
where ν is the unit normal vector field of M . The (normalized) mean
curvature of M is defined as

H =
1

n
trA.

An immersed hypersurface M in N is said to be a constant mean cur-
vature hypersurface if H is constant on M . Simply, we call M a cmc-H
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hypersurface. In particular, M is said to be a minimal hypersurface if
H = 0.

Remark 2.1. If M is a cmc-H hypersurface with nonzero H, then
M is orientable. We may assume that H > 0 by choosing the suitable
orientation.

Definition 2.2. An n-dimensional cmc-H hypersurface M in an (n+
1)-dimensional Riemannian manifold N is called strongly stable if for all

f ∈W 1,2
0 (M),

(2.1)

∫
M

{
|∇f |2 −

(
Ric(ν, ν) + |A|2

)
f2
}
≥ 0,

where Ric is the Ricci curvature of N and |A|2 is the squared norm of
the second fundamental form of M in N .
M is said to be weakly stable if (2.1) holds for all f ∈ W 1,2

0 (M)
satisfying ∫

M
f = 0.

A minimal hypersurface M is stable if it is strongly stable.

Remark that, for a cmc-H hypersurface, weak stability is more natu-
ral than other stability conditions because a cmc-H hypersurface can
be viewed as a critical point of area-functional for volume-preserving
variations (see [4]). From the definition, a strongly stable cmc-H hy-
persurface is weakly stable. However, the converse does not hold: For
example, a totally geodesic S2 isometrically immersed in S3 is weakly
stable, but is not strongly stable.

To work with a cmc-H hypersurface M ⊂ N , the traceless second
fundamental form is more useful than the second fundamental form.
The traceless second fundamental form, denoted by Φ, is defined by

Φ = A−H · gM ,

where gM is the metric on M . By a simple computation, we have

|A|2 = |Φ|2 + nH2,

and hence, for cmc-H hypersurface, (2.1) becomes∫
M

{
|∇f |2 −

(
Ric(ν, ν) + |Φ|2 + nH2

)
f2
}
≥ 0

For later use, we recall the famous Simons’ inequality for a cmc-H
hypersurface in a space form.
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Theorem 2.3 (Simons’ inequality [1, 8]). Let M be a cmc-H hyper-
surface in a space form Nn+1(c) with constant curvature c. If H ≥ 0,
then

(2.2) |Φ|4|Φ| ≥ 2

n
|∇|Φ||2 − |Φ|4 − n(n− 2)√

n(n− 1)
H|Φ|3 + n(H2 + c)|Φ|2.

3. Fundamental tone

Let M be a weakly stable cmc-H hypersurface in Hn+1. In Hn+1,
Ric(ν, ν) = −n, thus we write (2.1) as follows.

(3.1)

∫
M

{
|∇f |2 −

(
|Φ|2 + nH2 − n

)
f2
}
≥ 0.

Fix a point p ∈M . Let r(x) = dist(p, x) and B(p, r) = {x ∈M | r(x) <
r} be a distance function from p to x in M and a geodesic ball of
radius r centered at p, respectively. For any R > 0, define a function
ϕR(x) ∈ [−1, 1] on M as follows.

ϕR(x) =


1 on B(p,R);

2− r(x)
R on B(p, 3R) \B(p,R);

−1 on B(p, kR) \B(p, 3R);

−(k + 1) + r(x)
R on B(p, (k + 1)R) \B(p, kR);

0 on M \B(p, (k + 1)R).

Here, we can choose an integer k > 0 to make
∫
M ϕR < 0 since ϕR(x) > 0

if and only if r(x) < 2R, and the volume of M is infinite (see [10]). For
0 ≤ t ≤ R, define a one-parameter family of functions ϕR,t(x) to be

ϕR,t(x) =


1 on B(p,R);

2− r(x)
R on B(p, 2R+ t) \B(p,R);

− t
R on B(p, (k + 1)R− t) \B(p, 2R+ t);

−(k + 1) + r(x)
R on B(p, (k + 1)R) \B(p, (k + 1)R− t);

0 on M \B(p, (k + 1)R).

Since
∫
M ϕR,0 > 0, there exists t0 ∈ (0, R) such that

∫
M ϕR,t0 = 0. We

take ϕR,t0(x) ∈ [−1, 1] as a cut-off function on M . For the sake of con-
venience, we simply write it as ϕ(x). The following lemma is originally
proved in [8]. Here, we analyze the order of constants.
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Lemma 3.1. LetM be an n(≥ 3)-dimensional complete non-compact
orientable cmc-H hypersurface in Hn+1 with

∫
M |Φ|

2 < ∞. Let s >

0. If M is weakly stable, then there exist a constant C3 = O(n1+s)
independent of R and a constant R3 > 0 such that∫

M

|Φ|3ϕ2 < C3

∫
M

ϕ2|Φ|2,

for all R > R3.

Proof. Multiplying ϕ2 on both sides of (2.2), and integrating on M ,
we have ∫

M

|Φ|4|Φ|ϕ2 +

∫
M

|Φ|4ϕ2 + aH

∫
M

|Φ|3ϕ2

≥ 2

n

∫
M

|∇|Φ||2ϕ2 +

∫
M

(nH2 − n)|Φ|2ϕ2,

where a = n(n−2)√
n(n−1)

. The divergence theorem can be applied such that

−
∫
M

|∇|Φ||2ϕ2 − 2

∫
M

|Φ|ϕ〈∇|Φ|,∇ϕ〉+

∫
M

|Φ|4ϕ2 + aH

∫
M

|Φ|3ϕ2

≥ 2

n

∫
M

|∇|Φ||2ϕ2 +

∫
M

(nH2 − n)|Φ|2ϕ2.

(3.2)

Since M is stable, (3.1) becomes∫
M

|Φ|4ϕ2 +

∫
M

(
nH2 − n

)
|Φ|2ϕ2

≤
∫
M

|∇(|Φ|ϕ)|2

=

∫
M

|∇|Φ||2ϕ2 +

∫
M

|Φ|2|∇ϕ|2 + 2

∫
M

|Φ|ϕ〈∇|Φ|,∇ϕ〉.(3.3)

Applying Cauchy-Schwarz inequality,∫
M

|Φ|4ϕ2 +

∫
M

(
nH2 − n

)
|Φ|2ϕ2

≤ 2

∫
M

|∇|Φ||2ϕ2 + 2

∫
M

|Φ|2|∇ϕ|2.(3.4)
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Combining (3.2) and (3.3),

aH

∫
M

|Φ|3ϕ2 +

∫
M

|Φ|2|∇ϕ|2

≥ 2

n

∫
M

|∇|Φ||2ϕ2 + 2

∫
M

(nH2 − n)|Φ|2ϕ2.(3.5)

Multiplying 1
n to (3.4), and then combining with (3.5), we have

aH

∫
M

|Φ|3ϕ2 +

∫
M

|Φ|2|∇ϕ|2

≥ 1

n

∫
M

|Φ|4ϕ2 + (2n+ 1)(H2 − 1)

∫
M

|Φ|2ϕ2 − 2

n

∫
M

|Φ|2|∇ϕ|2.(3.6)

Note that a 6= 0 if n ≥ 3. From the Young’s inequality, xy ≤ εx2

2 + y2

2ε ,
we have the following estimate:∫

M

|Φ|3ϕ2 ≤ ε1
2

∫
M

|Φ|4ϕ2 +
1

2ε1

∫
M

|Φ|2ϕ2,(3.7)

where the constant ε1 > 0 will be chosen later. From (3.6) and (3.7), we
get (

1

n
− aHε1

2

)∫
M

|Φ|4ϕ2

≤
(
aH

2ε1
− (2n+ 1)(H2 − 1)

)∫
M

|Φ|2ϕ2 +

(
1 +

2

n

)∫
M

|Φ|2|∇ϕ|2.

Let A = 1
n −

aHε1
2 , B = aH

2ε1
− (2n + 1)(H2 − 1), and C = 1 + 2

n . We
can choose ε1 sufficiently small such that A,B,C > 0. Moreover, if we
let ε1 = θn−2s for some θ > 0, then constants C1, C2 can be obtained
by choosing sufficiently small θ such that B

A < C1 = O(n2+2s) and
C
A < C2 = O(n). Therefore∫

M

|Φ|4ϕ2 ≤ C1

∫
M

|Φ|2ϕ2 + C2

∫
M

|Φ|2|∇ϕ|2.

Note that C1 and C2 are independent of R. By using the Cauchy-
Schwarz inequality,∫

M

|Φ|3ϕ2 ≤
(∫

M

|Φ|2ϕ2

) 1
2

·
(∫

M

|Φ|4ϕ2

) 1
2

≤
(∫

M

|Φ|2ϕ2

) 1
2

·
(
C1

∫
M

|Φ|2ϕ2 + C2

∫
M

|Φ|2|∇ϕ|2
) 1

2

.
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Note that ϕ is a function of R. For every ε > 0, there is R1 > 0 such
that

∫
M
|Φ|2|∇ϕ|2 < ε if R > R1. As ε goes to 0,

∫
M
|Φ|2ϕ2 converges

to
∫
M
|Φ|2, which is positive unless M is totally umbilical. For every

positive ε < 1
2

∫
M
|Φ|2, there is R2 > 0 such that−ε+

∫
M
|Φ|2 <

∫
M
|Φ|2ϕ2

if R > R2. Put R3 = max{R1, R2}. Then, for all R > R3,∫
M

|Φ|3ϕ2 ≤ C3

∫
M

|Φ|2ϕ2,

where C3 is a constant such that (C1 + C2)
1
2 ≤ C3 = O(n1+s).

Now we give an upper bound for the fundamental tone of a complete
non-compact weakly stable cmc-H hypersurface in Hn+1.

Theorem 3.2. Let M be an n-dimensional complete non-compact
orientable cmc-H hypersurface in Hn+1 with

∫
M |Φ|

2 < ∞. Assume
that M is not a totally umbilical cmc-H hypersurface. Let s > 0. If M
is weakly stable, then

λ1(M) ≤ n2 + C4,

where C4 is a constant with C4 = O(n2+s). In particular, if n = 2, then
λ1(M

2) ≤ n2 = 4.

Proof. Putting f = |Φ|ϕ in (1.1), we have

λ1(M)

∫
M

|Φ|2ϕ2

≤
∫
M

|∇(|Φ|ϕ)|2

=

∫
M

|∇|Φ||2ϕ2 +

∫
M

|Φ|2|∇ϕ|2 + 2

∫
M

|Φ|ϕ〈∇|Φ|,∇ϕ〉

=

(
1 +

1

ε2

)∫
M

|∇|Φ||2ϕ2 + (1 + ε2)

∫
M

|Φ|2|∇ϕ|2.

In the last equality, we use the Cauchy-Schwarz and the Young’s in-
equality. The constant ε2 > 0 will be determined later. By remark 2.1,
we may assume that H ≥ 0. The inequality (3.5) still holds, and thus
we have

2

n

∫
M

|∇|Φ||2ϕ2

≤aH
∫
M

|Φ|3ϕ2 +

∫
M

|Φ|2|∇ϕ|2 + 2n

∫
M

|Φ|2ϕ2.(3.8)

Note with λ1(M) > 0 if H < α < n−1
n by Cheung and Leung [7].

However, it is not known whether it is usually positive. Here, what we
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want to get is an upper bound so that, without loss of generality, we
may assume λ1(M) > 0. Applying Lemma 3.1 to (3.8) for n ≥ 3, if
R > R3, then (

2

n
−

(2n+ C3)(1 + 1
ε2

)

λ1(M)

)∫
M

|∇|Φ||2ϕ2

≤
(

1 +
(2n+ C3)(1 + ε2)

λ1(M)

)∫
M

|Φ|2|∇ϕ|2.(3.9)

For a sufficiently large ε2 > 0, the right hand side of (3.9) converges
to zero as R goes to infinity because a complete non-compact stable
cmc-H hypersurface in hyperbolic space has infinite volume. If 2

n >
(2n+C3)(1+

1
ε2

)

λ1(M) , then |∇|Φ||2 ≡ 0 on M , and thus M is a totally umbilical

cmc-H hypersurface. This is a contradiction. Therefore we get

λ1(M) ≤ n2 +O(n2+s).

If n = 2, then a = 0. Similarly, we get λ1(M
2) ≤ n2 = 4.
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