JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **34**, No. 4, November 2021 http://dx.doi.org/10.14403/jcms.2021.34.4.369

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

SUNG-HONG MIN*

ABSTRACT. In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L^2 -norm of the traceless second fundamental form. If M is weakly stable, then $\lambda_1(M)$ is bounded above by $n^2 + O(n^{2+s})$ for arbitrary s > 0.

1. Introduction

Let M be a complete non-compact Riemannian manifold. The fundamental tone $\lambda_1(M)$ of M is defined as

$$\lambda_1(M) = \inf \left\{ \lambda_1(\Omega) : \ \Omega \subset M, \ \Omega \text{ is compact} \right\}.$$

It can be characterized variationally as

(1.1)
$$\lambda_1(M) = \inf\left\{\frac{\int_M |\nabla f|^2}{\int_M f^2}: \ 0 \neq f \in W_0^{1,2}(M)\right\}.$$

To find $\lambda_1(M)$ or to estimate $\lambda_1(M)$ is a very important and interesting problem in differential geometry. McKean [12] showed the following famous theorem.

THEOREM (McKean [12]). Let M be a complete simply connected Riemannian manifold with sectional curvature bounded above by a constant $-\kappa^2 < 0$. Then $\lambda_1(M) \geq \frac{(n-1)^2 \kappa^2}{4}$.

Received August 18, 2021; Accepted October 12, 2021.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C40; Secondary 53C42.

Key words and phrases: constant mean curvature hypersurface, stable, hyperbolic space, fundamental tone.

^{*}This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (Grant Number: 2017R1D1A1B03036369).

Let \mathbb{H}^m be an *m*-dimensional hyperbolic space with constant curvature -1. For a complete submanifold in hyperbolic space, Cheung and Leung [7] obtained the following theorem.

THEOREM (Cheung and Leung [7]). Let M be an *n*-dimensional complete non-compact submanifold in \mathbb{H}^m with the mean curvature vector \vec{H} . If $|\vec{H}| \leq \alpha < n-1$, then

$$\lambda_1(M) \ge \frac{(n-1-\alpha)^2}{4}.$$

There are also upper bound estimates for the fundamental tone of a complete submanifold in hyperbolic space.

THEOREM (Candel [5]). Let M be a stable simply connected minimal surface in \mathbb{H}^3 . Then

$$\frac{1}{4} \le \lambda_1(M) \le \frac{4}{3}.$$

THEOREM (Seo [13]). Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} with $\int_M |A|^2 < \infty$. Then

$$\frac{(n-1)^2}{4} \le \lambda_1(M) \le n^2.$$

Seo [14] also generalized his result to a complete minimal hypersurface in \mathbb{H}^{n+1} with finite index. For a cmc-*H* submanifold in hyperbolic space, Fu and Tao [11] showed the following.

THEOREM (Fu and Tao [11]). Let M be an *n*-dimensional complete non-compact orientable submanifold with parallel mean curvature vector in \mathbb{H}^{n+p} . If $\int_{M} |\Phi|^q < \infty$ for $q \geq n$, then

$$\lambda_1(M) \le \frac{(n-1)^2(1-|H|^2)}{4},$$

where Φ is the traceless second fundamental form of M.

In particular, if M is an $n(\leq 5)$ -dimensional complete non-compact weakly stable cmc-H hypersurface in \mathbb{H}^{n+1} with $\int_M |\Phi|^d < \infty$ for d = 1, 2, 3, then $\lambda_1(M) \leq \frac{(n-1)^2(1-|H|^2)}{4}$.

Meanwhile, Barbosa and do Carmo [2] proved that any compact cmc- $H, H \neq 0$, hypersurface in \mathbb{R}^{n+1} is weakly stable if and only if it is a round sphere. This result was extended by Barbosa, do Carmo, and Eschenburg [3] to a compact cmc-H hypersurface in space forms. Da Silveira [15] studied complete non-compact weakly stable cmc-H surfaces in \mathbb{R}^3 and \mathbb{H}^3 . In \mathbb{R}^3 , he generalized do Carmo and Peng [6], Fischer-Colbrie and Schoen [9] as follows: Any complete non-compact cmc-H surface is weakly stable if and only if it is totally geodesic. In \mathbb{H}^3 , the situation turns out differently: If $|H| \geq 1$, then any complete non-compact weakly stable cmc-H surface in \mathbb{H}^3 is a horosphere. However, there exists at least one one-parameter family of weakly stable non-umbilic cmc-H embeddings if |H| < 1. Later, Cheung and Zhou [8] proved that a complete non-compact weakly stable cmc-H hypersurface in \mathbb{H}^{n+1} , n = 3, 4, 5, with |H| > 1 is a compact geodesic sphere if the L^2 -norm of the traceless second fundamental form is bounded. Not much is known about complete non-compact weakly stable cmc-H hypersurfaces for higher dimensions.

In this paper, we obtain an upper bound for the fundamental tone of a complete non-compact weakly stable cmc-H hypersurface in \mathbb{H}^{n+1} with finite L^2 -norm of the traceless second fundamental form.

THEOREM (Theorem 3.2). Let M be an n-dimensional complete noncompact orientable cmc-H hypersurface in \mathbb{H}^{n+1} with $\int_{M} |\Phi|^{2} < \infty$. Assume that M is not a totally umbilical cmc-H hypersurface. Let s > 0. If M is weakly stable, then

$$\lambda_1(M) \le n^2 + C_4,$$

where C_4 is a constant with $C_4 = O(n^{2+s})$. In particular, if n = 2, then $\lambda_1(M^2) \le n^2 = 4$.

Note that there is no dimension restriction on M in the above theorem.

2. Preliminaries

Let M be an n-dimensional immersed orientable hypersurface in an (n+1)-dimensional Riemannian manifold N. Denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections of N and M, respectively. The second fundamental form of M is defined by, for all tangent vector fields X, Y,

$$\langle AX, Y \rangle = \langle \overline{\nabla}_X Y, \nu \rangle,$$

where ν is the unit normal vector field of M. The (normalized) mean curvature of M is defined as

$$H = \frac{1}{n} \mathrm{tr} A.$$

An immersed hypersurface M in N is said to be a constant mean curvature hypersurface if H is constant on M. Simply, we call M a cmc-H

hypersurface. In particular, M is said to be a minimal hypersurface if H = 0.

REMARK 2.1. If M is a cmc-H hypersurface with nonzero H, then M is orientable. We may assume that H > 0 by choosing the suitable orientation.

DEFINITION 2.2. An *n*-dimensional cmc-*H* hypersurface *M* in an (n+1)-dimensional Riemannian manifold *N* is called *strongly stable* if for all $f \in W_0^{1,2}(M)$,

(2.1)
$$\int_M \left\{ |\nabla f|^2 - \left(\overline{\operatorname{Ric}}(\nu, \nu) + |A|^2 \right) f^2 \right\} \ge 0,$$

where $\overline{\text{Ric}}$ is the Ricci curvature of N and $|A|^2$ is the squared norm of the second fundamental form of M in N.

M is said to be weakly stable if (2.1) holds for all $f \in W^{1,2}_0(M)$ satisfying

$$\int_M f = 0.$$

A minimal hypersurface M is *stable* if it is strongly stable.

Remark that, for a cmc-H hypersurface, weak stability is more natural than other stability conditions because a cmc-H hypersurface can be viewed as a critical point of area-functional for volume-preserving variations (see [4]). From the definition, a strongly stable cmc-H hypersurface is weakly stable. However, the converse does not hold: For example, a totally geodesic \mathbb{S}^2 isometrically immersed in \mathbb{S}^3 is weakly stable, but is not strongly stable.

To work with a cmc-H hypersurface $M \subset N$, the traceless second fundamental form is more useful than the second fundamental form. The traceless second fundamental form, denoted by Φ , is defined by

$$\Phi = A - H \cdot g_M,$$

where g_M is the metric on M. By a simple computation, we have

$$|A|^2 = |\Phi|^2 + nH^2$$

and hence, for cmc-H hypersurface, (2.1) becomes

$$\int_{M} \left\{ |\nabla f|^{2} - \left(\overline{\text{Ric}}(\nu, \nu) + |\Phi|^{2} + nH^{2} \right) f^{2} \right\} \ge 0$$

For later use, we recall the famous Simons' inequality for a cmc-H hypersurface in a space form.

THEOREM 2.3 (Simons' inequality [1, 8]). Let M be a cmc-H hypersurface in a space form $N^{n+1}(c)$ with constant curvature c. If $H \ge 0$, then

(2.2)
$$|\Phi| \triangle |\Phi| \ge \frac{2}{n} |\nabla|\Phi||^2 - |\Phi|^4 - \frac{n(n-2)}{\sqrt{n(n-1)}} H|\Phi|^3 + n(H^2 + c) |\Phi|^2.$$

3. Fundamental tone

Let M be a weakly stable cmc-H hypersurface in \mathbb{H}^{n+1} . In \mathbb{H}^{n+1} , $\overline{\operatorname{Ric}}(\nu,\nu) = -n$, thus we write (2.1) as follows.

(3.1)
$$\int_{M} \left\{ |\nabla f|^2 - \left(|\Phi|^2 + nH^2 - n \right) f^2 \right\} \ge 0.$$

Fix a point $p \in M$. Let $r(x) = \operatorname{dist}(p, x)$ and $B(p, r) = \{x \in M \mid r(x) < r\}$ be a distance function from p to x in M and a geodesic ball of radius r centered at p, respectively. For any R > 0, define a function $\varphi_R(x) \in [-1, 1]$ on M as follows.

$$\varphi_{R}(x) = \begin{cases} 1 & \text{on } B(p, R); \\ 2 - \frac{r(x)}{R} & \text{on } B(p, 3R) \setminus B(p, R); \\ -1 & \text{on } B(p, kR) \setminus B(p, 3R); \\ -(k+1) + \frac{r(x)}{R} & \text{on } B(p, (k+1)R) \setminus B(p, kR); \\ 0 & \text{on } M \setminus B(p, (k+1)R). \end{cases}$$

Here, we can choose an integer k > 0 to make $\int_M \varphi_R < 0$ since $\varphi_R(x) > 0$ if and only if r(x) < 2R, and the volume of M is infinite (see [10]). For $0 \le t \le R$, define a one-parameter family of functions $\varphi_{R,t}(x)$ to be

$$\varphi_{R,t}(x) = \begin{cases} 1 & \text{on } B(p,R); \\ 2 - \frac{r(x)}{R} & \text{on } B(p,2R+t) \setminus B(p,R); \\ -\frac{t}{R} & \text{on } B(p,(k+1)R-t) \setminus B(p,2R+t); \\ -(k+1) + \frac{r(x)}{R} & \text{on } B(p,(k+1)R) \setminus B(p,(k+1)R-t); \\ 0 & \text{on } M \setminus B(p,(k+1)R). \end{cases}$$

Since $\int_M \varphi_{R,0} > 0$, there exists $t_0 \in (0, R)$ such that $\int_M \varphi_{R,t_0} = 0$. We take $\varphi_{R,t_0}(x) \in [-1, 1]$ as a cut-off function on M. For the sake of convenience, we simply write it as $\varphi(x)$. The following lemma is originally proved in [8]. Here, we analyze the order of constants.

LEMMA 3.1. Let M be an $n(\geq 3)$ -dimensional complete non-compact orientable cmc-H hypersurface in \mathbb{H}^{n+1} with $\int_M |\Phi|^2 < \infty$. Let s >0. If M is weakly stable, then there exist a constant $C_3 = O(n^{1+s})$ independent of R and a constant $R_3 > 0$ such that

$$\int_M |\Phi|^3 \varphi^2 < C_3 \int_M \varphi^2 |\Phi|^2,$$

for all $R > R_3$.

Proof. Multiplying φ^2 on both sides of (2.2), and integrating on M, we have

$$\int_{M} |\Phi| \triangle |\Phi| \varphi^{2} + \int_{M} |\Phi|^{4} \varphi^{2} + aH \int_{M} |\Phi|^{3} \varphi^{2}$$
$$\geq \frac{2}{n} \int_{M} |\nabla|\Phi||^{2} \varphi^{2} + \int_{M} (nH^{2} - n) |\Phi|^{2} \varphi^{2},$$

where $a = \frac{n(n-2)}{\sqrt{n(n-1)}}$. The divergence theorem can be applied such that

$$\begin{aligned} &-\int_{M} |\nabla|\Phi||^{2} \varphi^{2} - 2 \int_{M} |\Phi|\varphi\langle\nabla|\Phi|, \nabla\varphi\rangle + \int_{M} |\Phi|^{4} \varphi^{2} + aH \int_{M} |\Phi|^{3} \varphi^{2} \\ &(3.2)\\ &\geq \frac{2}{n} \int_{M} |\nabla|\Phi||^{2} \varphi^{2} + \int_{M} (nH^{2} - n) |\Phi|^{2} \varphi^{2}. \end{aligned}$$

Since M is stable, (3.1) becomes

(3.3)
$$\begin{aligned} \int_{M} |\Phi|^{4} \varphi^{2} + \int_{M} \left(nH^{2} - n \right) |\Phi|^{2} \varphi^{2} \\ &\leq \int_{M} |\nabla(|\Phi|\varphi)|^{2} \\ &= \int_{M} |\nabla|\Phi||^{2} \varphi^{2} + \int_{M} |\Phi|^{2} |\nabla\varphi|^{2} + 2 \int_{M} |\Phi|\varphi \langle \nabla|\Phi|, \nabla\varphi \rangle. \end{aligned}$$

Applying Cauchy-Schwarz inequality,

(3.4)
$$\int_{M} |\Phi|^{4} \varphi^{2} + \int_{M} \left(nH^{2} - n \right) |\Phi|^{2} \varphi^{2}$$
$$\leq 2 \int_{M} |\nabla|\Phi||^{2} \varphi^{2} + 2 \int_{M} |\Phi|^{2} |\nabla\varphi|^{2}.$$

Combining (3.2) and (3.3),

(3.5)
$$aH \int_{M} |\Phi|^{3} \varphi^{2} + \int_{M} |\Phi|^{2} |\nabla \varphi|^{2}$$
$$\geq \frac{2}{n} \int_{M} |\nabla |\Phi||^{2} \varphi^{2} + 2 \int_{M} (nH^{2} - n) |\Phi|^{2} \varphi^{2}.$$

Multiplying $\frac{1}{n}$ to (3.4), and then combining with (3.5), we have

$$aH \int_{M} |\Phi|^{3} \varphi^{2} + \int_{M} |\Phi|^{2} |\nabla \varphi|^{2}$$

$$(3.6) \geq \frac{1}{n} \int_{M} |\Phi|^{4} \varphi^{2} + (2n+1)(H^{2}-1) \int_{M} |\Phi|^{2} \varphi^{2} - \frac{2}{n} \int_{M} |\Phi|^{2} |\nabla \varphi|^{2}.$$

Note that $a \neq 0$ if $n \geq 3$. From the Young's inequality, $xy \leq \frac{\epsilon x^2}{2} + \frac{y^2}{2\epsilon}$, we have the following estimate:

(3.7)
$$\int_{M} |\Phi|^{3} \varphi^{2} \leq \frac{\epsilon_{1}}{2} \int_{M} |\Phi|^{4} \varphi^{2} + \frac{1}{2\epsilon_{1}} \int_{M} |\Phi|^{2} \varphi^{2},$$

where the constant $\epsilon_1 > 0$ will be chosen later. From (3.6) and (3.7), we get

$$\left(\frac{1}{n} - \frac{aH\epsilon_1}{2}\right) \int_M |\Phi|^4 \varphi^2$$

$$\leq \left(\frac{aH}{2\epsilon_1} - (2n+1)(H^2 - 1)\right) \int_M |\Phi|^2 \varphi^2 + \left(1 + \frac{2}{n}\right) \int_M |\Phi|^2 |\nabla\varphi|^2.$$

Let $A = \frac{1}{n} - \frac{aH\epsilon_1}{2}$, $B = \frac{aH}{2\epsilon_1} - (2n+1)(H^2-1)$, and $C = 1 + \frac{2}{n}$. We can choose ϵ_1 sufficiently small such that A, B, C > 0. Moreover, if we let $\epsilon_1 = \theta n^{-2s}$ for some $\theta > 0$, then constants C_1, C_2 can be obtained by choosing sufficiently small θ such that $\frac{B}{A} < C_1 = O(n^{2+2s})$ and $\frac{C}{A} < C_2 = O(n)$. Therefore

$$\int_{M} |\Phi|^{4} \varphi^{2} \leq C_{1} \int_{M} |\Phi|^{2} \varphi^{2} + C_{2} \int_{M} |\Phi|^{2} |\nabla \varphi|^{2}.$$

Note that C_1 and C_2 are independent of R. By using the Cauchy-Schwarz inequality,

$$\int_{M} |\Phi|^{3} \varphi^{2} \leq \left(\int_{M} |\Phi|^{2} \varphi^{2} \right)^{\frac{1}{2}} \cdot \left(\int_{M} |\Phi|^{4} \varphi^{2} \right)^{\frac{1}{2}}$$
$$\leq \left(\int_{M} |\Phi|^{2} \varphi^{2} \right)^{\frac{1}{2}} \cdot \left(C_{1} \int_{M} |\Phi|^{2} \varphi^{2} + C_{2} \int_{M} |\Phi|^{2} |\nabla \varphi|^{2} \right)^{\frac{1}{2}}.$$

Note that φ is a function of R. For every $\epsilon > 0$, there is $R_1 > 0$ such that $\int_M |\Phi|^2 |\nabla \varphi|^2 < \epsilon$ if $R > R_1$. As ϵ goes to 0, $\int_M |\Phi|^2 \varphi^2$ converges to $\int_M |\Phi|^2$, which is positive unless M is totally umbilical. For every positive $\epsilon < \frac{1}{2} \int_M |\Phi|^2$, there is $R_2 > 0$ such that $-\epsilon + \int_M |\Phi|^2 < \int_M |\Phi|^2 \varphi^2$ if $R > R_2$. Put $R_3 = \max\{R_1, R_2\}$. Then, for all $R > R_3$,

$$\int_{M} |\Phi|^{3} \varphi^{2} \leq C_{3} \int_{M} |\Phi|^{2} \varphi^{2},$$

where C_3 is a constant such that $(C_1 + C_2)^{\frac{1}{2}} \leq C_3 = O(n^{1+s}).$

Now we give an upper bound for the fundamental tone of a complete non-compact weakly stable cmc-H hypersurface in \mathbb{H}^{n+1} .

THEOREM 3.2. Let M be an n-dimensional complete non-compact orientable cmc-H hypersurface in \mathbb{H}^{n+1} with $\int_M |\Phi|^2 < \infty$. Assume that M is not a totally umbilical cmc-H hypersurface. Let s > 0. If Mis weakly stable, then

$$\lambda_1(M) \le n^2 + C_4,$$

where C_4 is a constant with $C_4 = O(n^{2+s})$. In particular, if n = 2, then $\lambda_1(M^2) \leq n^2 = 4$.

Proof. Putting $f = |\Phi|\varphi$ in (1.1), we have

$$\begin{split} \lambda_1(M) &\int_M |\Phi|^2 \varphi^2 \\ \leq &\int_M |\nabla(|\Phi|\varphi)|^2 \\ = &\int_M |\nabla|\Phi||^2 \varphi^2 + \int_M |\Phi|^2 |\nabla\varphi|^2 + 2 \int_M |\Phi|\varphi \langle \nabla|\Phi|, \nabla\varphi \rangle \\ = &\left(1 + \frac{1}{\epsilon_2}\right) \int_M |\nabla|\Phi||^2 \varphi^2 + (1 + \epsilon_2) \int_M |\Phi|^2 |\nabla\varphi|^2. \end{split}$$

In the last equality, we use the Cauchy-Schwarz and the Young's inequality. The constant $\epsilon_2 > 0$ will be determined later. By remark 2.1, we may assume that $H \ge 0$. The inequality (3.5) still holds, and thus we have

(3.8)
$$\frac{2}{n} \int_{M} |\nabla|\Phi||^{2} \varphi^{2}$$
$$\leq aH \int_{M} |\Phi|^{3} \varphi^{2} + \int_{M} |\Phi|^{2} |\nabla\varphi|^{2} + 2n \int_{M} |\Phi|^{2} \varphi^{2}.$$

Note with $\lambda_1(M) > 0$ if $H < \alpha < \frac{n-1}{n}$ by Cheung and Leung [7]. However, it is not known whether it is usually positive. Here, what we

want to get is an upper bound so that, without loss of generality, we may assume $\lambda_1(M) > 0$. Applying Lemma 3.1 to (3.8) for $n \ge 3$, if $R > R_3$, then

(3.9)
$$\left(\frac{2}{n} - \frac{(2n+C_3)(1+\frac{1}{\epsilon_2})}{\lambda_1(M)}\right) \int_M |\nabla|\Phi||^2 \varphi^2$$
$$\leq \left(1 + \frac{(2n+C_3)(1+\epsilon_2)}{\lambda_1(M)}\right) \int_M |\Phi|^2 |\nabla\varphi|^2.$$

For a sufficiently large $\epsilon_2 > 0$, the right hand side of (3.9) converges to zero as R goes to infinity because a complete non-compact stable cmc-H hypersurface in hyperbolic space has infinite volume. If $\frac{2}{n} > \frac{(2n+C_3)(1+\frac{1}{\epsilon_2})}{\lambda_1(M)}$, then $|\nabla|\Phi||^2 \equiv 0$ on M, and thus M is a totally umbilical cmc-H hypersurface. This is a contradiction. Therefore we get

$$\lambda_1(M) \le n^2 + O(n^{2+s}).$$

If n = 2, then a = 0. Similarly, we get $\lambda_1(M^2) \le n^2 = 4$.

References

- H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc., 120 (1994), no. 4, 1223-1229.
- [2] J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z., 185 (1984), no. 3, 339-353.
- [3] J. L. Barbosa and M. do Carmo and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z., 197 (1988), no. 1, 123-138.
- [4] J. L. Barbosa and P. Bérard, Eigenvalue and "twisted" eigenvalue problems, applications to CMC surfaces, J. Math. Pures Appl., (9), 79 (2009), no. 5, 427-450.
- [5] A. Candel, Eigenvalue estimates for minimal surfaces in hyperbolic space, Trans. Amer. Math. Soc., 359 (2007), no. 8, 3567-3575.
- [6] M. do Carmo. and C. K. Peng, Stable complete minimal surfaces in R³ are planes, Bull. Amer. Math. Soc., (N.S.), 1 (1979), no. 6, 903-906.
- [7] L.-F. Cheung and P.-F. Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z., 236 (2001), no. 3, 525-530.
- [8] L.-F. Cheung and D. Zhou, Stable constant mean curvature hypersurfaces in \mathbb{R}^{n+1} and $\mathbb{H}^{n+1}(-1)$, Bull. Braz. Math. Soc., (N.S.), **36** (2005), no. 1, 99-114.
- D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math., 33 (1980), no. 2, 199-211.
- [10] K. R. Frensel, Stable complete surfaces with constant mean curvature, An. Acad. Brasil. Ciênc., 60 (1988), no. 2, 115-117.

- [11] H. Fu and Y. Tao, Eigenvalue estimates for complete submanifolds in the hyperbolic spaces, J. Math. Res. Appl., 33 (2013), no. 5, 598-606.
- [12] H. P. McKean, An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differ. Geom., 4 (1970), no. 3, 359-366.
- [13] K. Seo, Stable minimal hypersurfaces in the hyperbolic space, J. Korean Math. Soc., 48 (2011), no. 2, 253-266.
- [14] K. Seo, Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space, J. Inequal. Appl., (2016), no. 127, 1-5.
- [15] A. M. da Silveira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann., 277 (1987), no. 4, 629-638.

*

Department of Mathematics Chungnam National University Daejeon, 34134, Republic of Korea *E-mail*: sunghong.min@cnu.ac.kr