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ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ

4-SPACE FORMS

Firooz Pashaie

Abstract. The ordinary mean curvature vector fieldH on a submanifold

M of a space form is said to be proper if it satisfies equality ∆H = aH
for a constant real number a. It is proven that every hypersurface of

an Riemannian space form with proper mean curvature vector field has
constant mean curvature. In this manuscript, we study the Lorentzian

hypersurfaces with proper second mean curvature vector field of four di-

mensional Lorentzian space forms. We show that the scalar curvature of
such a hypersurface has to be constant. In addition, as a classification

result, we show that each Lorentzian hypersurface of a Lorentzian 4-space

form with proper second mean curvature vector field is C-biharmonic, C-
1-type or C-null-2-type. Also, we prove that every H2-proper Lorentzian

hypersurface with constant ordinary mean curvature in a Lorentz 4-space

form is 1-minimal.

1. Introduction

Among the differential geometric research subjects, the study of constant
mean curvature submanifolds is of great importance. Clearly, every such a
submanifold of an Euclidean space satisfies the proper condition. On the con-
trary, this is a question that has remained unanswered in some cases and is
closely related to a famous conjecture of Bang-Yen Chen which says that ev-
ery submanifold of an Euclidean space with harmonic mean curvature vector
field has zero mean curvature [6]. It has several improvements (for instance)
in [1, 5, 8, 9]. In this field, Defever has proved that the mean curvature of a
hypersurface in E4 is constant if its mean curvature vector is proper ([7]). The
subject of hypersurfaces in semi-Riemannian manifolds has been studied in the
last two decades (see [2, 4, 17,20]).

By definition, a hypersurface is H-proper if it satisfies the condition ∆H =
aH for a constant real number a, where ∆ is the Laplace operator. In this
paper, we take an extended version of this condition by putting the Cheng-Yau
operator C instead of ∆. The operator C denotes the linear operator arisen
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from the first variation of the second mean curvature (see [3, 11, 15, 16, 19]).
We study the H2-proper timelike (i.e. Lorentzian) hypersurfaces of Lorentz 4-
space forms. Since there are four possible matrix forms for the shape operator
of such a hypersurface, we discuss the subject in four different cases.

2. Preliminaries

We recall some notations and formulae from [10,13–16,21]. We use the semi-
Euclidean 5-space E5

ξ of index ξ = 1, 2, equipped with the product defined by

⟨v,w⟩ = −
∑ξ

i=1 viwi +
∑5

i=ξ+1 viwi, for each vectors v = (v1, . . . , v5) and

w = (w1, . . . , w5) in R5. In fact, we deal with the 4-dimensional Lorentzian
space forms with the following common notation

M4
1(c) =

 S41(r) (if c = 1/r2)
L4 = E4

1 (if c = 0)
H4

1(−r) (if c = −1/r2),

where, for r > 0, S41(r) = {v ∈ E5
1|⟨v,v⟩ = r2} denotes the 4-pseudosphere

of radius r and curvature 1/r2, and H4
1(−r) = {v ∈ E5

2|⟨v,v⟩ = −r2, v1 > 0}
denotes the pseudo-hyperbolic 4-space of radius −r and curvature −1/r2. In
the canonical cases c = ±1, we get the de Sitter 4-space dS4 := S41(1) and anti
de Sitter 4-space AdS4 = H4

1(−1). Also, for c = 0 we get the Lorentz-Minkowski
4-space L4 := E4

1.
We consider a Lorentzian (timelike) hypersurfaceM3

1 of a canonical Lorentzi-
an 4-space form (i.e. M4

1(c) for c = 0,±1) defined by an isometric immersion
x :M3

1 → M4
1(c). The set of all smooth tangent vector fields on M3

1 is denoted
by χ(M3

1 ). The symbols ∇ and ∇̄ denote the Levi-Civita connections on M3
1

and M4
1(c), respectively. Also, ∇0 denotes the Levi-Civita connection on E5

ν

(for ν = 1, 2). The Weingarten formula on M3
1 is ∇̄VW = ∇VW + ⟨SV,W ⟩n,

for each V,W ∈ χ(M3
1 ), where S is the shape operator associated to a unit

normal vector field n on M3
1 . Furthermore, in the case |c| = 1, M4(c) is a

4-hyperquadric with the unit normal vector field x and the Gauss formula
∇0

VW = ∇̄VW − c⟨V,W ⟩x.
According to the Lorentz metric on M3

1 induced from M4(c), we can de-
termine the possible states for a base of the tangent space of M3

1 . For a de-
tailed study, one can refer to the references [12, 13, 18]. In general, a basis
Ω := {w1, w2, w3} of a Lorentz linear 3-space is said to be orthonormal if it
satisfies equalities ⟨w1, w1⟩ = −1, ⟨w2, w2⟩ = ⟨w3, w3⟩ = 1 and ⟨wi, wj⟩ = 0
for each i ̸= j. Also, Ω is called pseudo-orthonormal if it satisfies ⟨w1, w1⟩ =
⟨w2, w2⟩ = 0, ⟨w1, w2⟩ = −1 and ⟨wi, w3⟩ = δ3i for i = 1, 2, 3. As usual, δ is the
Kronecker Delta.

Associated to a basis chosen on M3
1 , the second fundamental form (shape

operator) S has four different matrix forms. When the metric on M3
1 has
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diagonal form G1 := diag[−1, 1, 1], then S is of form D1 = diag[λ1, λ2, λ3] or

D2 = diag[
[

λ1 λ2
−λ2 λ1

]
, λ3], (λ2 ̸= 0).

In the non-diagonal metric case G2 = diag[
[

0 1
1 0

]
, 1] the shape operator is of

form

D3 = diag[

[
λ1 + 1

2
1
2

− 1
2

λ1 − 1
2

]
, λ2] or D4 =

[
λ 0

√
2

2

0 λ −
√

2
2

−
√

2
2 −

√
2

2 λ

]
.

When S = Dk, we say that M3
1 is a Dk-hypersurface. To unify symbols, we

define the ordered triple {κ1;κ2;κ3} of principal curvatures as follows:

{κ1;κ2;κ3} =


{λ1;λ2;λ3} (if S = D1)
{λ1 + iλ2;λ1 − iλ2;λ3} (if S = D2)
{λ1;λ1;λ2} (if S = D3)
{λ;λ;λ} (if S = D4).

We apply the symmetric functions

s0 := 1, s1 =

3∑
j=1

κj , s2 :=
∑

1≤i1<i2≤3

κi1κi2 and s3 := κ1κ2κ3,

in the definition of jth mean curvature of M3
1 given by Hj = 1

(3j )
sj (where

j = 0, 1, 2, 3). When Hj+1 is identically null, M3
1 is called j-minimal. By

definition, a D1-hypersurface M
3
1 is isoparametric if it has constant principal

curvatures. For k = 2, 3, 4, a Dk-hypersurface M
3
1 is isoparametric if the coeffi-

cients of minimal polynomial of its shape operator are constant. By a theorem
in [12], each timelike hypersurface of M4

1(c) with complex principal curvatures
is non-isoparametric. The Newton operators on M3

1 are given by the inductive
definitions N0 = I and Nj = sjI − S ◦Nj−1 for j = 1, 2, 3. As usual, I denotes
the identity operator (see [15,16]).

In special case, H1 is the ordinary mean curvature H. The second mean
curvature H2 and the normalized scalar curvature R satisfy the equality H2 :=
n(n− 1)(1−R).

We apply the Newton map on M3
1 by expression

(2.1) N0 = I, N1 = −s1I + S, N2 = s2I − s1S + S2.

We need to certify the matrix form of N1 and N2 in four cases S = Dk (k =
1, 2, 3, 4). When S = D1, we have N1 = diag[λ2 + λ3, λ1 + λ3, λ1 + λ2] and
N2 = diag[λ2λ3, λ1λ3, λ1λ2].

In the case S = D2,

N1 = diag[

[
λ1 + λ3 −λ2

λ2 λ1 + λ3

]
, 2κ] and N2 = diag[

[
λ1λ3 −λ2λ3

λ2λ3 λ1λ3

]
, λ21 + λ22].
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When S = D3,

N1 = diag[

[
λ1 + λ2 − 1

2
− 1

2
1
2

λ1 + λ2 + 1
2

]
, 2λ1] and

N2 = diag[

[
(λ1 − 1

2
)λ2 − 1

2
λ2

1
2
λ2 (λ1 + 1

2
)λ2

]
, λ21].

In the case S = D4,

N1 =

[
2λ 0 −

√
2

2

0 2λ
√

2
2√

2
2

√
2

2
2λ

]
and N2 =

[
λ2 − 1

2
− 1

2
−

√
2

2
λ

1
2

λ2 + 1
2

√
2

2
λ

√
2

2
λ

√
2

2
λ λ2

]
.

We have the following formulae for the Newton transformations:

tr(Nj) = cjHj , tr(S ◦Nj) = cjHj+1,

tr(S2 ◦N1) = 9H1H2 − 3H3, tr(S
2 ◦N2) = 3H1H3,

(2.2)

where j = 0, 1, 2, c0 = c2 = 3 and c1 = 6.
Now, we consider the Cheng-Yau operator C : C∞(M3

1 ) → C∞(M3
1 ) given

by C(f) = tr(N1 ◦ ∇2f), where, ∇2f : χ(M) → χ(M) denotes the self-adjoint
linear operator metrically equivalent to the Hessian of f which is defined by
(∇2f)X = ∇X(∇f) for every smooth vector fields X on M3

1 , where ∇f = ♯df .

In other words, C(f) is given by C(f) =
∑3

i=1 µi,1(eieif −∇eieif).
A hypersurface is said to be H2-proper if its second mean curvature vector

field satisfies the condition CH2 = aH2, for a constant number a. Clearly, this
condition has a simpler expression by two equations as:

(i) CH2 = H2(a+ 9H1H2 − 3H3),

(ii) N2∇H2 =
9

2
H2∇H2.

(2.3)

Now we recall the definition of an C-finite type hypersurface from [10]. The
structure equations of E4

1 are given by

dωi =

4∑
j=1

ωij ∧ ωj , ωij + ωji = 0

and

dωij =

4∑
l=1

ωil ∧ ωlj .

With restriction to M3
1 , we have ω4 = 0 and then,

0 = dω4 =

3∑
i=1

ω4,i ∧ ωi.

A lemma due to Cartan gives the decomposition

ω4,i =

3∑
j=1

hijωj
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for smooth functions hij satisfying the equality B =
∑
hijωiωje4, where B is

the second fundamental form of M . The mean curvature H is given by

H =
1

3

3∑
i=1

hii.

So, the structure equations of M are

dωi =

3∑
j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij =

3∑
k=1

ωik ∧ ωkj −
1

2

3∑
k,l=1

Rijklωk ∧ ωl

for i, j = 1, 2, 3, and the Gauss equations Rijkl = (hikhjl−hilhjk), where Rijkl

denotes the components of the Riemannian curvature tensor of M . Now, let
hijk denote the covariant derivative of hij . We have

dhij =

3∑
k=1

hijkωk +

3∑
k=1

hkjωik +

3∑
k=1

hikωjk.

One can choose e1, . . . , en such that hij = κiδij . On the other hand, the
Levi-Civita connection of M3 satisfies ∇eiej =

∑
k ωjk(ei)ek, and we have

ei(kj) = ωij(ej)(κi − κj) and

ωij(el)(κi − κj) = ωil(ej)(κi − κl)

whenever i, j, l are distinct.

Definition 2.1. An isometrically immersed hypersurface ψ : M3
1 → M4

1(c)
(for c = ±1) is said to be of C-finite type if ψ has a finite decomposition
ψ =

∑m
i=0 ψi, for some positive integer m, satisfying the condition Cψi = γiψi,

for some real numbers γi ∈ R and vector mappings ψi : M3
1 → E5

s (where
s = 1 or s = 2) for i = 1, 2, · · · ,m, and ψ0 is a constant vector. Mn is called
C-m-type if all γi’s are mutually distinct. An C-m-type hypersurface is said to
be null if for at least one i (1 ≤ i ≤ m) we have γi = 0.

3. H2-proper Hypersurfaces

In this section, we study the H2-proper timelike hypersurfaces of M4
1(c).

Theorem 3.1. Every H2-proper D1-hypersurface x : M3
1 → M4

1(c) satisfies
one of the following conditions:

(i) M3
1 is C-biharmonic,

(ii) M3
1 is of C-1-type,

(iii) M3
1 is of C-null-2-type.
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Proof. By assumption, H2 is proper, which means that it satisfies condition
CH2 = cH2 for a constant real number c. If c = 0, then M3

1 is a C-biharmonic
hypersurface, which gives (i). In the case c ̸= 0, taking x1 = 1

cCx and x0 =
x− x1, we have

Cx1 =
1

c
C2x =

6

c
CH2 = 6H2 = Cx.

Hence, M is either of C-1-type or of C-null-2-type, depending on x0 is a con-
stant or non-constant. The converse is easy to verify. □

Theorem 3.2. The C-finite type Lorentz hypersurfaces of the 4-dimensional
Lorentz space form can not be C-biharmonic.

Proof. Let x : M3
1 → M4

1(c) be a C-k-type Lorentzian hypersurface. There is
a decomposition as

(3.1) x = x0 + x1 + · · ·+ xk,

with Cx0 = 0 and Cxi = λixi for nonzero distinct eigenvalues λ1, . . . , λk of C.
From (3.1) we get

(3.2) Csx = λs1x1 + · · ·+ λskxk,

for s = 1, 2, 3, . . ..
Now, assume that x is C-biharmonic (i.e C2x = C3x = 0). So, from (3.2)

we get {
λ21x1 + · · ·+ λ2kxk = 0
λ31x1 + · · ·+ λ3kxk = 0,

Since λ1, . . . , λk are mutually distinct eigenvalues of C, the vectors x1, . . . ,xk

are linearly independent. Hence, we have λ1 = · · · = λk = 0, which is a
contradiction. □

Proposition 3.3. Each H2-proper D1-hypersurface of M4
1(c) with three dis-

tinct principal curvatures has constant scalar curvature.

Proof. Let x : M3
1 → M4

1(c) be such a hypersurface. It is enough to prove
that H2 is constant. By the method of reasoning on reductio ad absurdum,
we assume that U = {p ∈ M : ∇H2

2 (p) ̸= 0} is non-empty. Since the shape
operator S is of type D1, for mutually distinct λi’s (i = 1, 2, 3) we have Sei =

λiei and N2ei = µi,2ei. By decomposition ∇H2 =
3∑

i=1

ϵiei(H2)ei, the condition

(2.3)(ii) gives

(3.3) ei(H2)(µi,2 −
9

2
H2) = 0, (i = 1, 2, 3).

Around each point in U, there exists an open neighborhood on which we have
ei(H2) ̸= 0 for at least one i. We can assume (without loss of generality)
that e1(H2) ̸= 0 and then we get µ1,2 = 9

2H2 (locally) on U, which gives

λ2λ3 = 9
2H2.
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The continuation of the proof is the confirmation of several equalities, which
is done in three steps.

Step 1: e2(H2) = e3(H2) = 0.
If e2(H2) ̸= 0 or e3(H2) ̸= 0, then by (3.3) we get µ1,2 = µ2,2 = 9

2H2 or

µ1,2 = µ3,2 = 9
2H2, which give (λ1 − λ2)λ3 = 0 or (λ1 − λ3)λ2 = 0. Since λi’s

are distinct, we have λ3 = 0 or λ2 = 0, and then H2 = 0 on U. The result
contradicts with the definition of U.

Step 2: e2(λ1) = e3(λ1) = 0.
From the assumption that H is constant, it follows that

e2(λ1) = e2(3H − λ1 − λ2) = −e2(λ1)− e2(λ2).

On the other hand, by Step 1 we have e2(H2) = 0 and λ2λ3 = 9
2H2 and then

we have

e2(λ1λ3) + e2(λ1λ2) = e2(3H2 −
9

2
H2) = 0,

which gives λ1e2(λ2 + λ3) + (λ2 + λ3)e2λ1 = 0, and then we have

λ1e2(3H − λ1) + (λ2 + λ3)e2λ1

=λ1e2(−λ1) + (λ2 + λ3)e2λ1

=(−λ1 + λ2 + λ3)e2λ1 = 0.

Therefore, assuming e2(λ1) ̸= 0, we get λ1 = λ2+λ3 which gives a contradiction

e2(λ1) = e2(λ2 + λ3) = e2(3H − λ1) = −e2(λ1).

Consequently, e2(λ1) = 0.
Similarly, one can show e3(λ1) = 0.
Step 3: e2(λ3) = e3(λ2) = 0.

From the covariant derivatives

∇eiej =

3∑
k=1

ωk
ijek (i, j = 1, 2, 3),

using the compatibility condition ∇ek⟨ei, ej⟩ = 0, we get

ωi
ki = 0, ωj

ki + ωi
kj = 0 (i, j, k = 1, 2, 3),

and by the Codazzi equation

(∇V S)W = ∇WS)V (∀V,W ∈ χ(M)),

for distinct i, j, k ∈ {1, 2, 3}, we obtain

(i) ei(λj) = (λi − λj)ω
j
ji,

(ii) (λi − λj)ω
j
ki = (λk − λj)ω

j
ik.

A simple computation on the components of the identity (∇eiS)ej−(∇ejS)ei ≡
0 for distinct i, j = 1, 2, 3, gives [e2, e3](H2) = 0, ω1

12 = ω1
13 = ω2

13 = ω3
21 =
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ω1
32 = 0 and

ω2
21 =

e1(λ2)

λ1 − λ2
, ω3

31 =
e1(λ3)

λ1 − λ3
, ω2

23 =
e3(λ2)

λ3 − λ2
, ω3

32 =
e2(λ3)

λ2 − λ3
.

Hence, we have ∇e1ek = 0 for k = 1, 2, 3, and

∇e2e1 =
e1(λ2)

λ1 − λ2
e2, ∇e3e1 =

e1(λ3)

λ1 − λ3
e3,∇e2e2 =

e1(λ2)

λ2 − λ1
e1,

∇e3e2 =
e2(λ3)

λ2 − λ3
e3,∇e2e3 =

e3(λ2)

λ3 − λ2
e2, ∇e3e3 =

e1(λ3)

λ3 − λ1
e1 +

e2(λ3)

λ3 − λ2
e2.

(3.4)

The Gauss equations ⟨R(e2, e3)e1, e2⟩ and ⟨R(e2, e3)e1, e3⟩ give

(3.5) e3

(
e1(λ2)

λ1 − λ2

)
=

e3(λ2)

λ3 − λ2

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(3.6) e2

(
e1(λ3)

λ1 − λ3

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
.

Also equations ⟨R(e1, e2)e1, e2⟩ and ⟨R(e3, e1)e1, e3⟩ give
(3.7)

e1

(
e1(λ2)

λ1 − λ2

)
+

(
e1(λ2)

λ1 − λ2

)2

= λ1λ2, e1

(
e1(λ3)

λ1 − λ3

)
+

(
e1(λ3)

λ3 − λ1

)2

= λ1λ3.

Finally, from ⟨R(e3, e1)e2, e3⟩ we have

(3.8) e1

(
e2(λ3)

λ2 − λ3

)
=

e1(λ3)e2(λ3)

(λ3 − λ1)(λ2 − λ3)
.

On the other hand, from Step 1 we obtain
(3.9)

−µ1,1e1e1(H2) +

(
µ2,1

e1(λ2)

λ2 − λ1
+ µ3,1

e1(λ3)

λ3 − λ1

)
e1(H2)− 9H2

2 (H − 3

2
λ1) = 0.

By covariant derivative of (3.9) along e2 and e3 respectively, and using (3.5),
(3.6) we get

(3.10) e2

(
e1(λ2)

λ2 − λ1

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(3.11) e3

(
e1(λ3)

λ3 − λ1

)
=

e3(λ2)

λ3 − λ2

(
e1(λ2)

λ1 − λ2
− e1(λ3)

λ1 − λ3

)
.

Using (3.4), we find that

(3.12) [e1, e2] =
e1(λ2)

λ2 − λ1
e2.
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Applying both sides of the equality (3.12) on e1(λ2)
λ2−λ1

, using (3.10), (3.7), and

(3.8), we deduce that

(3.13)
e2(λ3)

λ2 − λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0.

(3.13) shows that e2(λ3) = 0 or

(3.14)
e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
.

From equation (3.14), by differentiating on its both sides along e1 and ap-
plying (3.7), we get λ2 = λ3, which is a contradiction, so we have to confirm
the result e2(λ3) = 0.

Analogously, using (3.4), we find that [e1, e3] = e1(λ3)
λ3−λ1

e3. By a similar
manner, we deduce that

(3.15)
e3(λ2)

λ3 − λ2

(
e1(λ2)

λ2 − λ1
+

e1(λ3)

λ1 − λ3

)
= 0,

and one can show that e3(λ2) necessarily has to be vanished.
Hence, we have obtained e2(λ3) = e3(λ2) = 0 which, by applying the Gauss

equation for < R(e2, e3)e1, e3 >, gives the following equality

(3.16)
e1(λ3)e1(λ2)

(λ3 − λ1)(λ2 − λ1)
= λ2λ3.

Finally, using (3.7), differentiating (3.16) along e1 gives

(3.17) λ2λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0,

which implies λ2λ3 = 0 (since we have seen above that
(

e1(λ3)
λ3−λ1

+ e1(λ2)
λ1−λ2

)
̸= 0).

Therefore, we obtain H2 = 0 on U, which is a contradiction. Hence H2 is
constant on M3

1 . □

Theorem 3.4. Every H2-proper D1-hypersurface of M4
1(c) with constant mean

curvature and three distinct principal curvatures is 1-minimal.

Proof. By Proposition 3.3, the 2nd mean curvature H2 is constant. We prove
that H2 ≡ 0. Assume that H2 ̸= 0 on a neighborhood around a point. The
condition (2.3)(i) gives that H3 is constant. HenceM3

1 is isoparametric because
H1, H2 and H3 are constant. Using Corollary 2.7 in [12], we know that every
isoparametric D1-hypersurface may not have more than one nonzero principal
curvature. Therefore, we have a contradiction with the assumption that, M
has three distinct principal curvatures. Hence H2 ≡ 0. □

Proposition 3.5. Each H2-proper D1-hypersurface of M4
1(c) with exactly two

distinct principal curvatures has constant scalar curvature.
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Proof. Let x : M3
1 → M4

1(c) be such a hypersurface. It is enough to prove
that H2 is constant. In the method of reasoning on reductio ad absurdum, we
assume that U = {p ∈ M : ∇H2

2 (p) ̸= 0} is non-empty. The shape operator
S is of type D1 with two distinct eigenfunctions η and λ of multiplicities 1
and 2, respectively. Hence, we have Se1 = λe1, Se2 = λe2, Se3 = ηe3 and
N2ei = µi,2ei for i = 1, 2, 3, where

(3.18) µ1,2 = µ2,2 = λη, µ3,2 = λ2, 3H2 = λ2 + 2λη.

By (2.3)(ii), we get N2(∇H2) =
9
2H2∇H2, which using

∇H2 =

3∑
i=1

ϵi⟨∇H2, ei⟩ei,

gives

ϵi⟨∇H2, ei⟩(µi,2 −
9

2
H2) = 0

on U for i = 1, 2, 3. Hence, for each i if ⟨∇H2, ei⟩ ≠ 0 on U , then we get

(3.19) µi,2 =
9

2
H2.

Since ∇H2 ̸= 0 on U, one or both of the following cases hold.
Case 1. ⟨∇H2, ei⟩ ̸= 0, for i = 1 or i = 2. By equalities (3.18) and (3.19),

we obtain

λη =
9

2
(
2

3
λη +

1

3
λ2),

which gives

(3.20) λ(2η +
3

2
λ) = 0.

If λ = 0 then H2 = 0. Otherwise, we get η = − 3
4λ, H2 = − 1

6λ
2.

Case 2. ⟨∇H2, e3⟩ ≠ 0. By equalities (3.18) and (3.19), we obtain

λ2 =
9

2
(
2

3
λη +

1

3
λ2),

which gives

(3.21) λ(3η +
1

2
λ) = 0.

If λ = 0 then H2 = 0. Otherwise, we have η = − 1
6λ, H2 = 2

9λ
2.

Both cases require the same calculation, so we consider for instance Case 2.
Let us denote the maximal integral submanifold through x ∈ U, corresponding
to λ by Un−1

1 (x). We write

(3.22) dλ =

3∑
i=1

λiωi dη =

3∑
j=1

ηjωj .
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Then, we have λ1 = λ2 = 0. We can assume that λ > 0 on U, then we have

(3.23) η =
−1

6
λ < 0.

From the formula of dhij in Section 2, we obtain

(3.24)

3∑
k=1

hijkωk = δijdλj + (λi − λj)ωij ,

for i, j, k = 1, 2, 3. Here, we take a, b, c = 1, 2.
From (3.22) and (3.24), we have

h12k = h21k = 0,

haab = 0, haa3 = λ,3,

h33a = 0, h333 = µ,3.

(3.25)

From
3∑

i=1

ha3iωi = dha3 +

3∑
i=1

hi3ωia +

3∑
i=1

haiωi3 = (λ− η)ωa3,

and equality (3.23) we obtain

(3.26) ωa3 =
λ,3
λ− η

ωa =
6λ,3
7λ

ωa.

Therefore we have

dω3 =

2∑
a=1

ω3a ∧ ωa = 0.

Notice that we may consider λ to be locally a function of the parameter
s, where s is the arc length of an orthogonal trajectory of the family of the
integral submanifolds corresponding to λ. We may put ω3 = ds.
Thus, for λ = λ(s), we have

dλ = λ3ds, λ3 = λ′(s),

so from (3.26), we get

(3.27) ωa3 =
λ3

λ− η
ωa =

6λ′(s)

7λ
ωa.

According to the structure equations of E4
1 and (3.27), we may compute

(i) dωa3 =

2∑
b=1

ωab ∧ ωb3 + ωa4 ∧ ω43 =

(
6λ′

7λ

) 2∑
b=1

ωab ∧ ωb − ληωa ∧ ds,

(ii) dωa3 = d

{
6λ′

7λ
ωa

}
=

(
6λ′

7λ

)′

ds ∧ ωa +

(
6λ′

7λ

)
dωa

=

{
−
(
6λ′

7λ

)′

+

(
6λ′

7λ

)2
}
ωa ∧ ds+

(
6λ′

7λ

) 2∑
b=1

ωab ∧ ωb.

(3.28)
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Comparing equalities (3.28)(i) and (3.28)(ii), we get
(

6λ′

7λ

)′
−
(

6λ′

7λ

)2

−λη =

0, which, by combining with (3.23), gives

(3.29)

(
6λ′

7λ

)′

−
(
6λ′

7λ

)2

−
(
−1

6

)
λ2 = 0.

Defining function β(s) :=
(

1
λ(s)

) 6
7

for s ∈ (−∞,+∞), from (3.29) we get

β′′ =
(
1
6

)
β

−8
6 , which by integrating, gives (β′)2 = −β −2

6 + c, where c is the
constant of integration. The last equation is equivalent to

(3.30) (λ′)2 = −
(
7

6

)2

λ4 + c

(
7

6

)2

λ
26
7 .

Now, in order to compare two sides of condition (2.3)(i), we need to compute
∇ei∇H2 and P1(ei) for i = 1, 2, 3. From (3.20) we have ∇H2 = 4

9λλ
′e3, which

by using (3.27), gives

∇ea∇H2 =
4

9
λλ′∇eae3 =

4

9
λrλ′

∑
b

ω3b(ea)eb = − 8

21
λ′

2
ea,

∇e3∇H2 =
4

9
∇e3(λλ

′e3) =
4

9
λ′

2
e3 +

4

9
λλ′′e3.

(3.31)

By using (3.18) and (3.23), we compute P1(ea) and P1(e3).

(3.32) P1(e1) =
5

6
λe1, P1(e2) =

5

6
λe2 P1(e3) = 2λe3.

From (3.31) and (3.32), we get

(3.33) □(H2) = 6H2

(
−10(λ′)2

21λ
+

2(λ′)2

3λ
+

2

3
λ′′

)
.

From 2.3(i), we have □(H2) = H2tr(S
2 ◦ P1) = 2H2

11
6 λ

3, which combining
with (3.33), gives

(3.34) λλ′′ +

(
1 +

−5

7

)
λ′

2 − 2
33

12
λ4 = 0.

On the other hand, the equality (3.29) is equivalent to

(3.35) λλ′′ =
13

7
λ′

2
+

−7

36
λ4.

Now, substituting (3.35) and (3.34), we obtain

(3.36)
15

7
λ′

2
+

191

36
λ4 = 0.

From equations (3.30), (3.36) and (3.20), we get that H2 is locally constant on
U, which is a contradiction with the definition of U. Hence H2 is constant on
M . By a similar discussion, one can get the same result in Case 1. □
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Theorem 3.6. Each H2-proper D1-hypersurface of M4
1(c) with constant mean

curvature and at most two distinct principal curvatures is 1-minimal.

Proof. The proof is similar to the proof of Theorem 3.4. □

Proposition 3.7. Each H2-proper D2-hypersurface of M4
1(c) with constant

ordinary mean curvature and a constant real principal curvature has constant
second and third mean curvatures.

Proof. In the first stage, we show that the open subset U = {p ∈M : ∇H2
2 (p) ̸=

0} is empty. By the method of reasoning on reductio ad absurdum, we assume
that U is non-empty. Since S is of type D2, we have Se1 = κe1 − λe2, Se2 =
λe1+κe2, Se3 = ηe3 and then, N2e1 = κηe1+ληe2, N2e2 = −ληe1+κηe2 and
N2e3 = (κ2 + λ2)e3.

The condition (2.3)(ii) by using ∇H2 =
∑3

i=1 ϵiei(H2)ei gives

(i) ϵ1e1(H2)(κη −
9

2
H2) = ϵ2e2(H2)λη,

(ii) ϵ2e2(H2)(κη −
9

2
H2) = −ϵ1e1(H2)λη,

(iii) ϵ3e3(H2)(κ
2 + λ2 − 9

2
H2) = 0.

(3.37)

The continuation of the proof is the confirmation of several equalities, which is
done in two steps.

Step 1: e1(H2) = e2(H2) = 0.
If e1(H2) ̸= 0, then we divide both sides of equations (3.37)(i), (ii) by ϵ1e1(H2),
so we get

(i) κη − 9

2
H2 =

ϵ2e2(H2)

ϵ1e1(H2)
λη,

(ii)
ϵ2e2(H2)

ϵ1e1(H2)
(κη − 9

2
H2) = −λη.

(3.38)

Substituting (3.38)(i) in (3.38)(ii), we get λη(1 + ( ϵ2e2(H2)
ϵ1e1(H2)

)2) = 0, which gives

λη = 0. Since λ ̸= 0 is assumed, we have η = 0. So, by (3.38)(i), we get H2 = 0.
In a Similar way, if e2(H2) ̸= 0, then by dividing both sides of equations

(3.37)(i), (ii) by ϵ2e2(H2) we get

(i)
ϵ1e1(H2)

ϵ2e2(H2)
(κη − 9

2
H2) = λη,

(ii) κη − 9

2
H2 = −ϵ1e1(H2)

ϵ2e2(H2)
λη,

(3.39)

which, by substituting (3.39)(i) in (3.39)(ii), we have λη(1 + ( ϵ1e1(H2)
ϵ2e2(H2)

)2) = 0,

then λη = 0. Since by assumption λ ̸= 0, we get η = 0. So, by (3.39)(ii), we
have H2 = 0.
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Step 2: e3(H2) = 0.
If e3(H2) ̸= 0, then from equality (3.37)(iii) we have κ2+λ2 = 9

2H2, which gives

κ2+λ2 = −6κη, where η = 3H1−2κ and η and H1 are assumed to be constant
on U. So, κ is also constant on U, and then, we obtainH2 = −4

3 κη = 8
3κ

2−4H1κ

and H3 = −6κη2 = −6κ(3H1 − 2κ)2 are constant on U. □

Theorem 3.8. Every H2-proper D2-hypersurface of M4
1(c) with constant ordi-

nary mean curvature and a constant real principal curvature is 1-minimal and
2-minimal.

Proof. By Proposition 3.7, the second mean curvature ofM3
1 is constant, which

gives C(H2) = 0. Then, by (2.3)(i), we have 9H1H
2
2 − 3H2H3 = 0, which gives

(7η − 4κ)κ2η2 = 0.
Now, if 7η = 4κ, then from κ2 + λ2 = −6κη we get 31

7 κ
2 + λ2 = 0, and

then κ = λ = 0, which gives H2 = H3 = 0. Also, if κ2η2 = 0, then we have
H2 = H3 = 0. □

Proposition 3.9. Every H2-proper D3-hypersurface of M4
1(c) with constant

ordinary mean curvature has constant second mean curvature.

Proof. Suppose that, H2 is non-constant. Considering the open subset U =
{p ∈ M : ∇H2

2 (p) ̸= 0}, we try to show U = ∅. By the assumption, with
respect to a suitable (local) orthonormal tangent frame {e1, e2, e3} on M , the
shape operator S has the matrix form D3, such that Se1 = (κ + 1

2 )e1 −
1
2e2,

Se2 = 1
2e1+(κ− 1

2 )e2, Se3 = λe3 and then, we have N2e1 = (κ− 1
2 )λe1+

1
2λe2,

N2e2 = − 1
2λe1 + (κ+ 1

2 )λe2 and N2e3 = κ2e3.

Using the polar decomposition ∇H2 =
∑3

i=1 ϵiei(H2)ei, from condition
(2.3)(ii) we get

(i) ϵ1e1(H2)[(κ− 1

2
)λ− 9

2
H2] = ϵ2e2(H2)

λ

2
,

(ii) ϵ2e2(H2)[(κ+
1

2
)λ− 9

2
H2] = −ϵ1e1(H2)

λ

2
,

(iii) ϵ3e3(H2)(κ
2 − 9

2
H2) = 0.

(3.40)

Now, we prove a simple claim.
Claim : e1(H2) = e2(H2) = e3(H2) = 0.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.40)(i), (ii) by ϵ1e1(H2)
we get

(i) (κ− 1

2
)λ− 9

2
H2 =

ϵ2e2(H2)

ϵ1e1(H2)

λ

2
,

(ii)
ϵ2e2(H2)

ϵ1e1(H2)
[(κ+

1

2
)λ− 9

2
H2] = −λ

2
,

(3.41)

which, by substituting (i) in (ii), gives λ
2 (1 + u)2 = 0, where u := ϵ2e2(H2)

ϵ1e1(H2)
.

Then λ = 0 or u = −1. If λ = 0, then we get H2 = 0 from (3.41)(i). Also, by
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assumption λ ̸= 0 we get u = −1 which gives κλ = 9
2H2. Then κ(3κ+ 4λ) = 0

and finally κ = − 4
3λ (since κ = 0 gives H2 = 0 again). Hence, we have

H2 = 2
9κλ = − 8

27λ
2 and H1 = − 5

9λ, and since H1 is assumed to be constant,
H2 has to be constant and we have e1(H2) = 0, which is a contradiction.
Therefore, the first claim is proved. The second claim (i.e. e2(H2) = 0) can be
proven by a similar manner.

Now, if e3(H2) ̸= 0, then by (3.40)(iii) we get κ2 = 9
2H2, then κ(κ+6λ) = 0,

which gives κ = 0 or κ = −6λ. If κ = 0, then H2 = 0, and if κ = −6λ then
since H1 = − 11

3 λ is assumed to be constant, we get that H2 is constant and
then e3(H2) = 0. Which is a contradiction, so we have e3(H2) = 0. □

Theorem 3.10. Let x : M3
1 → E4

1 be a D3-hypersurface with proper second
mean curvature vector field. If M3

1 has constant ordinary mean curvature, then
it is 1-minimal.

Proof. By assumption H1 is assumed to be constant and then, by Proposition
3.9 it is proved that H2 has to be constant. We claim that H2 is null. Since
the shape operator is of type D3, there exist two possible cases as:

Case 1: M3
1 has a principal curvature κ of multiplicity 3;

Case 2: M3
1 has two principal curvatures κ and λ of multiplicities 2 and 1,

respectively.
In Case 1, we have H1 = κ, H2 = κ2 and H3 = κ3. By (2.3)(i), we have

3H1H
2
2 = H2H3, which gives κ5 = 0, and then H2 = 0.

In Case 2, we have H1 = 1
3 (2κ+ λ), H2 = 1

3 (κ
2 + 2κλ) and H3 = κ2λ. We

assume that H2 ̸= 0 and continue in two subcases as follow. Since H2 ̸= 0,
then κ ̸= 0 and by using (2.3)(i) we obtain that H3 is constant. Therefore,
all of mean curvatures Hi (for i = 1, 2, 3) are constant, which means that
M3

1 is isoparametric. By Corollary 2.7 in [12], an isoparametric Lorentzian
hypersurface of Case D3 in the Einstein space has at most one nonzero principal
curvature, so we get λ = 0. Then H1 = 2

3κ, H2 = 1
3κ

2 and H3 = 0, hence,
by (2.3)(i), we get κ = 0, which contradicts with the assumption of this case.
Therefore H2 = 0. □

Proposition 3.11. Let x : M3
1 → M4

1(c) be a D4-hypersurface with proper
second mean curvature vector field. Then its second mean curvature is constant.

Proof. Suppose that, H2 be non-constant. Considering the open subset U =
{p ∈ M : ∇H2

2 (p) ̸= 0}, we try to show U = ∅. By the assumption, with
respect to a suitable (local) orthonormal tangent frame {e1, e2, e3} on M , the

shape operator S has the matrix form B̃3, such that Se1 = κe1 +
√
2
2 e3, Se2 =

κe2−
√
2
2 e3, Se3 = −

√
2
2 e1−

√
2
2 e2+κe3 and then, we have P2e1 = (κ2− 1

2 )e1−
1
2e2−

√
2
2 κe3, P2e2 = 1

2e1+(κ2+ 1
2 )e2+

√
2
2 κe3 and P2e3 =

√
2
2 κe1+

√
2
2 κe2+κ

2e3.
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Using the polar decomposition ∇H2 =
∑3

i=1 ϵiei(H2)ei, from condition
(2.3)(ii) we get

(i) ϵ1e1(H2)[(κ
2 − 1

2
)− 9

2
H2] +

1

2
ϵ2e2(H2) +

√
2

2
ϵ3e3(H2)κ = 0

(ii)
−1

2
ϵ1e1(H2) + ϵ2e2(H2)[(κ

2 +
1

2
)− 9

2
H2] +

√
2

2
ϵ3e3(H2)κ = 0

(iii) ϵ1e1(H2)
−
√
2

2
κ+ ϵ2e2(H2)

√
2

2
κ+ ϵ3e3(H2)(κ

2 − 9

2
H2) = 0.

(3.42)

Now, we prove some simple claims.
Claim: e1(H2) = e2(H2) = e3(H2) = 0.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.40)(i), (ii), (iii) by
ϵ1e1(H2), and using the identity H2 = κ2, we get

(i) − 1

2
− 7

2
κ2 +

1

2
u1 +

√
2

2
u2κ = 0

(ii)
−1

2
+ u1(

1

2
− 7

2
κ2) +

√
2

2
u2κ = 0

(iii)
−
√
2

2
κ+

√
2

2
u1κ− 7

2
κ2)u2 = 0,

(3.43)

where u1 := ϵ2e2(H2)
ϵ1e1(H2)

and u2 := ϵ3e3(H2)
ϵ1e1(H2)

, which, by comparing (i) and (ii), gives

κ2(u1 − 1) = 0. If κ = 0, then H2 = 0. Assuming κ ̸= 0, we get u1 = 1, which,
using (3.43)(iii), gives u2 = 0. Substituting u1 = 1 and u2 = 0 in (3.43)(i), we
obtain again κ = 0, which is a contradiction. Hence e1(H2) ≡ 0.

Therefore, using the result e1(H2) ≡ 0, the system of equations (3.42) gives

(i)
1

2
ϵ2e2(H2) +

√
2

2
ϵ3e3(H2)κ = 0

(ii) ϵ2e2(H2)(
1

2
− 7

2
κ2) +

√
2

2
ϵ3e3(H2)κ = 0

(iii) ϵ2e2(H2)

√
2

2
κ− ϵ3e3(H2)

7

2
κ2 = 0.

(3.44)

Comparing (i) and (ii), we get κe2(H2) = 0, which using (iii) gives κe3(H2) = 0,
and then, using (i), gives e2(H2) = 0. Then, the second claim (i.e. e2(H2) = 0)
is proved.

Now, using the results e1(H2) = e2(H2) = 0, we get κe3(H2) = 0, which,
using H2 = κ2, implies κe3(κ

2) = 0 and then e3(κ
3) = 0, and finally e3(H2) =

0. □

Theorem 3.12. Let x :M3
1 → M4

1(c) be a D4-hypersurface with proper second
mean curvature vector field. If the ordinary mean curvature of M3

1 is constant,
then it is 1-minimal. Furthermore, all of mean curvatures of M3

1 are null.
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Proof. By Proposition 3.11, the 2th mean curvature of M3
1 is constant, which,

by (2.3)(i), gives L1H2 = 9H1H
2
2 − 3H2H3 = 0. Then 3H1H

2
2 = H2H3, which,

using H1 = κ, H2 = κ2 and H3 = κ3, gives κ5 = 0, and then H1 = H2 = H3 =
0. □
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