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ON SOME GEOMETRIC PROPERTIES OF QUADRIC

SURFACES IN EUCLIDEAN SPACE

Ahmad T. Ali, H. S. Abdel Aziz and Adel H. Sorour∗

Abstract. This paper is concerned with the classifications of quadric
surfaces of first and second kinds in Euclidean 3-space satisfying
the Jacobi condition with respect to their curvatures, the Gaussian
curvature K, the mean curvature H, second mean curvature HII

and second Gaussian curvature KII . Also, we study the zero and
non-zero constant curvatures of these surfaces. Furthermore, we in-
vestigated the (A,B)-Weingarten, (A,B)-linear Weingarten as well

as some special
(
C2,K

)
and

(
C2,K

√
K
)
-nonlinear Weingarten

quadric surfaces in E3, where A 6= B, A, B ∈ {K,H,HII ,KII}
and C ∈ {H,HII ,KII}. Finally, some important new lemmas are
presented.

1. Introduction

Weingarten surfaces are surfaces whose Gaussian and mean curva-
tures satisfy a functional relationship (of class C0 at least). The class
of Weingarten surfaces contains already mentioned surfaces of constant
curvatures K or H. Furthermore, a Cr-surface, r > 3, is Weingarten if
and only if KuHv − Kv Hu = 0. On the other hand, let A and B be
smooth functions on a surface M(u, v) in Euclidean 3-space E3. The
Jacobi function Φ(A,B) formed with A and B is defined by:

Φ(A,B) = det

(
Au Av

Bu Bv

)
,

where Au =
∂A

∂u
and Av =

∂A

∂v
.
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For the pair (A,B) of curvatures K, H, HII and KII of M in E3,
if M satisfies Φ(A,B) = 0, aA + bB = c, aC2 + bK = c and

aC2+bK
√
K = c, then we call (A,B)-Weingarten surface (W-surface),

(A,B)-linear Weingarten surface (LW-surface),
(
C2,K

)
-the first type of

nonlinear Weingarten surface (FNW-surface) and
(
C2,K

√
K
)
-the sec-

ond type of nonlinear Weingarten surface (SNW-surface), respectively,
where a, b, c ∈ R, (a, b, c) 6= (0, 0, 0).

The classification of the Weingarten surfaces in Euclidean space is
almost completely open today. These surfaces were introduced by Wein-
garten [1, 2] in the context of the problem of finding all surfaces isometric
to a given surface of revolution. Applications of Weingarten surfaces on
computer aided design and shape investigation can seen in [3].

The authors in [4, 5] have investigated ruled Weingarten surfaces
and ruled linear Weingarten surfaces in E3. Besides, a classification
of ruled Weingarten surfaces and ruled linear Weingarten surfaces in a
Minkowski 3-space E3

1 is given in [6, 7, 8]. Munteanu and Nistor [9]
studied polynomial translation linear Weingarten surfaces in Euclidean
3-space. Also, Lopez [10, 11] studied cyclic linear Weingarten surface
in Euclidean 3-space. In [12] Lopez classified all parabolic linear Wein-
garten surfaces in hyperbolic 3-space. Ro and Yoon [13] studied a tube
of Weingarten types in Euclidean 3-space satisfying some equation in
terms of the Gaussian curvature, mean curvature and second Gauss-
ian curvature. Recently, Kim and Yoon [14] classified quadric surfaces
in Euclidean 3-space in terms of the Gaussian curvature and the mean
curvature. In addition to, Yoon and Jun [15] classified non-degenerate
quadric surfaces in Euclidean 3-space in terms of the isometric immersion
and the Gauss map. Furthermore in ([16, 17]), Weingarten timelike tube
surfaces around spacelike and timelike curves were studied in Minkowski
3-space E3

1.
A quadratic surface intersects every plane in a (proper or degenerate)

conic section. Moreover, the cone consisting of all tangents from a fixed
point to a Quadratic surface cuts every plane in a conic section, and the
points of contact of this cone with the surface form a conic section [18].
There are 17-standard form types of quadric surfaces. Examples of qua-
dratic surfaces include the cone, cylinder, ellipsoid, elliptic cone, elliptic
cylinder, elliptic hyperboloid, elliptic paraboloid, hyperbolic cylinder,
hyperbolic paraboloid, sphere and spheroid, etc.

In this paper, some kinds of the quadric surfaces in 3-dimensional
Euclidean space satisfying the Jacobi condition with respect to their
curvatures have been studied. Also, we study the zero and non-zero
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constant curvatures of quadric surfaces. Furthermore, we investigated
the (A,B)-Weingarten, (A,B)-linear Weingarten,

(
C2,K

)
-first type of

nonlinear Weingarten and
(
C2,K

√
K
)
-second type of nonlinear Wein-

garten quadric surfaces in E3.

2. Fundamental concepts

Let E3 be a Euclidean 3-space with the scalar product given by 〈., .〉 =
dx21 + dx22 + dx23, where (x1, x2, x3) is a standard rectangular coordinate
system of E3. Let M : Ψ = Ψ(u, v) be a surface in Euclidean 3-space.
The unit normal vector field of M can be defined by:

(2.1) N =
Ψu ∧Ψv

‖Ψu ∧Ψv‖ , Ψu =
∂Ψ

∂u
, Ψv =

∂Ψ

∂v
,

where ∧ stands the vector product of E3. The first fundamental form I
of the surface M is

(2.2) I = 〈dΨ, dΨ〉 = E du2 + 2F dudv +Gdv2,

with coefficients

E = 〈Ψu,Ψu〉, F = 〈Ψu,Ψv〉, G = 〈Ψv,Ψv〉.
The second fundamental form of the surface M is given by

(2.3) II = −〈dN, dΨ〉 = e du2 + 2f dudv + g dv2.

From which the components the second fundamental form e, f and g are
expressed as

e = 〈Ψuu, N〉, f = 〈Ψuv, N〉, g = 〈Ψvv, N〉.
Under this parametrization of the surface M , the Gaussian curvatureK
and the mean curvature H have the classical expressions, respectively
[19]

(2.4) K =
e g − f2

EG− F 2
,

(2.5) H =
E g +G e− 2F f

2 (EG− F 2)
.

The mean curvature HII of non-degenerate second fundamental form in
a Euclidean 3-space E3 is defined by [20]

(2.6) HII = H +
1

2
∆II

(
ln
√

| K |),
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where H and K are the mean curvature and the Gaussian curvatures
respectively, and ∆II denotes the Laplacian operator of non-degenerate
second fundamental form, that is,

∆II =
1√
| h |

2∑

i,j=1

∂

∂ui

[√
| h |hij ∂

∂uj

]
,

where e = h11, f = h12, g = h22, h =det(hij), (hij) = (hij)
−1 and

{ui} is rectangular coordinate system in E3. The curvature HII is said
to be the second mean curvature of a surface M in a Euclidean 3-space.

The second Gaussian curvature KII of a surface is defined by (cf.[21])

(2.7) KII =
1

(eg − f2)
2





∣∣∣∣∣∣

− 1
2evv + fuv − 1

2guu
1
2eu fu − 1

2ev
fv − 1

2gu e f
1
2gv f g

∣∣∣∣∣∣

−
∣∣∣∣∣∣

0 1
2ev

1
2gu

1
2ev e f
1
2gu f g

∣∣∣∣∣∣



 .

Now, we can write the following important definition [22]:

Definition 2.1. (1): A regular surface is flat (developable) if and
only if its Gaussian curvature vanishes identically.

(2): A regular surface for which the mean curvature vanishes identi-
cally is minimal surface.

(3): A non developable surface is called II-flat if the second Gaussian
curvature vanishes identically.

(4): A non developable surface is called II-minimal if the second mean
curvature vanishes identically.

Now, we summarize the definition of a quadric surface as

A subset M of Euclidean 3-space E3 is called a quadric surface if it
is the set of points (x1, x2, x3) satisfying the following equation of the
second degree:

(2.8)

3∑

i,j=0

aij xi xj +

3∑

i=0

bi xi + c = 0,
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or equivalently

(
x1 x2 x3

)



a11 a12 a13
a21 a22 a23
a31 a32 a33







x1
x2
x3




+
(
b1 b2 b3

)



x1
x2
x3


+ c = 0,

where aij , bi, c are all real numbers.

By applying a coordinate transformation in E3 if necessary, M is
either ruled surface, or one of the following two kinds [23].

The first kind:

(2.9) x23 − a x21 − b x22 = c, a b c 6= 0,

The second kind:

(2.10) x3 =
a

2
x21 +

b

2
x22, a > 0, b > 0.

3. Quadric surfaces - the first kind

Let M : Ψ = Ψ(u, v) be a quadric surface of the first kind in E3 and
satisfy the equation (2.9). Then M can be written as

(3.1) Ψ(u, v) =
(
u, v,

√
a u2 + b v2 + c

)
.

By (2.4) and (2.5), the direct computation of (3.1) gives the Gaussian
curvature K and the mean curvature H as

(3.2) K =
a b c

ω2
,

(3.3) H =
(a+ b)c+ a b

[
(a+ 1)u2 + (b+ 1)v2

]

2ω3/2
.

On the other hand, the second curvatures of the surface M as in (2.6)
and (2.7) are given by
(3.4)

KII =
1

2c ω3/2

[
a c (a+ 1)(b− a− 1)u2 − b c (b+ 1)(b− a+ 1)v2

−2a b (a+ 1)(b+ 1)u2v2 − a2(a+ 1)2u4 − b2(b+ 1)2v4 + (a+ b)c2
]
,
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(3.5)

HII =
1

2c ω3/2

[
a c (a+ 1)(2a− b− 6)u2 − b c (b+ 1)(a− 2b+ 6)v2

−4a b (a+ 1)(b+ 1)u2v2 − 2a2(a+ 1)2u4 − 2b2(b+ 1)2v4 − (a+ b+ 4)c2
]
,

where

ω = c+ a(a+ 1)u2 + b(b+ 1)v2.

The above equations with the condition a b c 6= 0 enable us to give the
following important lemma:

lemma 3.1. Let M be a quadric surface of the first kind. Then the
following are satisfied:

(1): M is non-developable surface.

(2): M is non-minimal surface.

(3): M is non-II-minimal surface.

(4): M is non-II-flat surface.

3.1. Weingarten property of quadric surfaces of the first
kind

We now differentiate K, H, KII and HII with respect to u and v, the
results are, respectively

(3.6)





Ku = −4a2b c (a+ 1)u

ω3
,

Kv = −4a b2c (b+ 1)v

ω3
,

(3.7)



Hu = −a(a+ 1)

2ω5/2

[
(3a+ b)c+ a b (a+ 1)u2 + b (b+ 1)(3a− 2b)v2

]
u,

Hv = −b(b+ 1)

2ω5/2

[
(a+ 3b)c− a(a+ 1)(2a− 3b)u2 + a b (b+ 1)v2

]
v,

(3.8)



(KII)u = −a(a+ 1)

2c ω5/2

[
(5a+ b+ 2)c2 − a(a+ 1)(a− b− 3)c u2

+b(b+ 1)
(
5(a− b) + 3

)
c v2 + (ω − c)2

]
u,

(KII)v = −b(b+ 1)

2c ω5/2

[
(a+ 5b+ 2)c2 − a(a+ 1)

(
5(a− b)− 3

)
c u2

+b(b+ 1)(a− b+ 3)c v2 + (ω − c)2
]
v,
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and
(3.9)



(HII)u = −a(a+ 1)

2c ω5/2

[
a(a+ 1)(2a+ 2− b)c u2 + b(b+ 1)(8b− 7a+ 2)c v2

+4a b (a+ 1)(b+ 1)u2v2 + 2a2(1 + a)2u4 + 2b2(1 + b)2v4 − (7a+ b)c2
]
u,

(HII)v = −b(b+ 1)

2c ω5/2

[
a(a+ 1)(8a+ 2− 7b)c u2 + b(b+ 1)(−a+ 2b+ 2)c v2

+4a b (a+ 1)(b+ 1)u2v2 + 2a2(a+ 1)2u4 + 2b2(b+ 1)2v4 − (a+ 7b)c2
]
v.

The Weingarten property for the surface (3.1) can be studied within
some computations of the following Jacobi functions:
(3.10)



Φ
(
H,K

)
=

4a2b2(a+ 1)(b+ 1)(a− b)c u v

ω9/2
,

Φ
(
KII ,K

)
=

8a2b2(a+ 1)(b+ 1)(a− b)c u v

ω9/2
,

Φ
(
HII ,K

)
=

12a2b2(a+ 1)(b+ 1)(b− a)c u v

ω9/2
,

Φ
(
KII , H

)
=

a b (a+ 1)(b+ 1)(a− b)
[
(a+ b− 2)c− a(a+ 1)u2 − b(b+ 1)v2

]
u v

2c ω3
,

Φ
(
HII , H

)
=

a b (a+ 1)(b+ 1)(b− a)
[
(a+ b)c+ a(a+ 1)u2 + b(b+ 1)v2

]
u v

c ω3
,

Φ
(
KII , HII

)
=

a b (a+ 1)(b+ 1)(a− b)
(
(a+ b+ 6)c+ 7

[
a(a+ 1)u2 + b(b+ 1)v2

])
u v

2c ω3
.

It follows that all above Jacobi functions vanish if and only if one of the
following conditions are satisfied: a = −1, b = −1 or a = b. Therefore,
we have proved the following Lemma:

lemma 3.2. If M is a quadric surface of the first kind in the Eu-
clidean 3-space, then, the following are equivalent:

(1): M is a Weingarten surface of type Φ(H,K) = 0.

(2): M is a Weingarten surface of type Φ(KII ,K) = 0.

(3): M is a Weingarten surface of type Φ(HII ,K) = 0.

(4): M is a Weingarten surface of type Φ(KII ,H) = 0.

(5): M is a Weingarten surface of type Φ(HII ,H) = 0.

(6): M is a Weingarten surface of type Φ(KII ,HII) = 0.

(7): M is an open part of one of an ellipsoid and hyperboloid:

(3.11) Ψ(u, v) =
(
u, v,

√
c− u2 + b v2

)
,

(3.12) Ψ(u, v) =
(
u, v,

√
c+ a u2 − v2

)
,
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(3.13) Ψ(u, v) =
(
u, v,

√
c+ a(u2 + v2)

)
.

3.2. Quadric surfaces - the first kind with non-zero constant
curvatures

In this section, we will study the quadric surface of the first kind (3.1)
when it has non-zero constant curvatures.

First we examine quadric surfaces of the first kind having a non-zero
constant Gaussian curvature. In this case, the form (3.2) can be written
as

0 = K ω2 − a b c =

2∑

i,j=0

Ωij u
2i v2j

where the non-zero coefficients Ωij are

(3.14)





Ω00 = c(cK − a b), Ω01 = 2b c (b+ 1)K,
Ω10 = 2a c (a+ 1)K, Ω11 = 2a b (a+ 1)(b+ 1)K,
Ω02 = b2(b+ 1)2K, Ω20 = a2(a+ 1)2K.

From (3.14), we can notice that the Gaussian curvature is constant if
and only if a = b = −1. It becomes K = 1

c .
By a similar discussion as above we can also do straightforward com-

putations for constant mean,second Gaussian and second mean curva-
tures. Thus, we have the following lemma:

lemma 3.3. Let M be a quadric surface of the first kind in Euclidean
3-space E3. Then, the following are equivalent:

(1): M has non-zero constant Gauss curvature K = 1
c .

(2): M has non-zero constant mean curvature H = − 1√
c
.

(3): M has non-zero constant second mean curvature HII = − 1√
c
.

(4): M has non-zero constant second Gaussian curvature KII =
− 1√

c
.

(5): M takes the parametrization Ψ(u, v) =
(
u, v,

√
c− u2 − v2

)

which is a sphere.

3.3. Linear and nonlinear Weingarten quadric surfaces of
the first kind

From now on, we will discuss the following three cases of the surface
(3.1) related to the linear as well as nonlinear Weingarten property in the
form A+ c1B = c2, where (A,B) ∈ {(HII ,H), (KII ,H), (KII ,HII)}.
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Firstly, we consider the linear equation

(3.15) HII + c1H = c2.

Therefore, substituting the Eqs. (3.3) and (3.5) into Eq. (3.15), one can
obtain

4c2ω3
[(
HII + c1H

)2 − c22

]
=

4∑

i,j=0

Ωij u
2i v2j = 0.

Here, the coefficients Ωij are
(3.16)



Ω00 = c4
([

4− (a+ b)(c1 − 1)
]2 − 4 c c22

)
,

Ω01 = 2b(b+ 1)c3
[
2(b− 3)

(
b(c1 − 1)− 4

)
+ a2(c1 − 1)2

+a(c1 − 1)
(
b(c1 + 1)− 10

)− 6cc22

]
,

Ω10 = 2a(a+ 1)c3
[
2(a− 3)

(
a(c1 − 1)− 4

)
+ b2(c1 − 1)2

+b(c1 − 1)
(
a(c1 + 1)− 10

)− 6cc22

]
,

Ω11 = 2a b c2(a+ 1)(b+ 1)
[
2
[
26 + (a+ b)(1 + 5c1) + (a2 + b2)(c1 − 1)

]

+ab(5− 2c1 + c21)
]
,

Ω02 = b2c2(b+ 1)2
[
4
[
13 + b(b− 5− c1) + a(b− 4)(c1 − 1)− 3cc22

]

+a2(c1 − 1)2
]
,

Ω20 = a2c2(a+ 1)2
[
4
[
13 + a(a− 5− c1) + b(a− 4)(c1 − 1)− 3cc22

]

+b2(c1 − 1)2
]
,

Ω12 = 4c b2(b+ 1)2a(a+ 1)
[
2(9− ac1)− b(3 + c1)− 3cc22

]
,

Ω21 = 4c a2(a+ 1)2b(b+ 1)
[
2(9− bc1)− a(3 + c1)− 3cc22

]
,

Ω22 = 24a2b2(a+ 1)2(b+ 1)2,

Ω03 = 4c b3(b+ 1)3
[
2(3− b)− a(c1 − 1)− cc22

]
,

Ω30 = 4c a3(a+ 1)3
[
2(3− a)− b(c1 − 1)− cc22

]
,

Ω31 = 16a3(a+ 1)3b(1 + b), Ω13 = 16b3(b+ 1)3a(1 + a),

Ω04 = 4b4(b+ 1)4, Ω40 = 4a4(a+ 1)4.
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It follows that, when a = b = −1, all the coefficients Ωij are equal zero.

In this case, we have c2 = −
(1 + c1√

c

)
.

Similarly, we can discuss the another two cases and we can obtain
the following lemma:

lemma 3.4. Let M be a quadric surface of the first kind in Euclidean
3-space E3. Then, the following are equivalent:

(1): M is linear Weingarten surface satisfyingHII+c1H = −
(1 + c1√

c

)
.

(2): M is linear Weingarten surface satisfiyingKII+c1H = −
(1 + c1√

c

)
.

(3): M is linear Weingarten surface satisfyingKII+c1HII = −
(1 + c1√

c

)
.

(4): The parametrization of M takes the form

Ψ(u, v) =
(
u, v,

√
c− u2 − v2

)

which is a sphere.

Secondly, we will interest here with discussion of the two types (the
first-the second) of nonlinear Weingarten property parallel to the study
that considered in the above, so, we will investigate the following types:

The first type: C2 + c1K = c2, C ∈ {H,HII ,KII}.
We begin with the form

(3.17) H2 + c1K = c2.

Using (3.2) and (3.3), then Eq. (3.17) can be written

4ω3
[
H2 + c1K − c2

]
=

3∑

i,j=0

Ωij u
2i v2j = 0,
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for some non-zero constants Ωij given by
(3.18)



Ω00 =
[
(a+ b)2 + 4(a b c1 + c2)

]
c2,

Ω01 = 2b c (b+ 1)
[[
a+ (2c1 + 1)b

]
a− 6c c2

]
,

Ω10 = 2a c (a+ 1)
[[
(2c1 + 1)a+ b

]
b− 6c c2

]
,

Ω11 = 2a b (a+ 1)(b+ 1)(a b− 12c c2),

Ω02 = b2(b+ 1)2(a2 − 12c c2), Ω20 = a2(a+ 1)2(b2 − 12c c2),

Ω12 = −12a b2 (a+ 1)(b+ 1)2 c2), Ω21 = −12b a2 (b+ 1)(a+ 1)2 c2),

Ω03 = −4b3(b+ 1)3c2, Ω30 = −4a3(a+ 1)3c2.

For satisfying Eq. (3.17), the constants a and b must be equal −1, and

we get c2 =
1 + c1

c
.

By the above construction one can do the other two casesK2
II+c1K =

c2, H
2
II + c1K = c2 and the following lemma can be summarized.

lemma 3.5. Let M be a quadric surface of the first kind in Euclidean
3-space E3. Then, the following are equivalent:

(1): M is nonlinear Weingarten surface of the first type satisfying

some equations H2 + c1K =
1 + c1

c
.

(2): M is nonlinear Weingarten surface of the first type satisfying

some equations K2
II + c1K =

1 + c1
c

.

(3): M is nonlinear Weingarten surface of the first type satisfying

some equations H2
II + c1K =

1 + c1
c

.

(4): The parametrization of M is a sphere:

Ψ(u, v) =
(
u, v,

√
c− u2 − v2

)
.

The second type: C2 + c1K
√
K = c2, C ∈ {H,HII ,KII}.

In an analogous way, let now give the relation:

(3.19) H2 + c1K
√
K = c2.

By the aid of the formulas (3.2) and (3.3), Eq. (3.19) becomes
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4ω3
[
H2 + c1K

√
K − c2

]
=

3∑

i,j=0

Ωij u
2i v2j = 0,

with the coefficients Ωij defined by

(3.20)



Ω00 = (a+ b)2c2 + 4(a b c)
3
2 c1 − 4c3c2,

Ω01 = 2b c (b+ 1)
[
a(a+ b)− 6c c2

]
,

Ω10 = 2a c (a+ 1)
[[
b(a+ b)− 6c c2

]
,

Ω11 = 2a b (a+ 1)(b+ 1)(a b− 12c c2),
Ω02 = b2(b+ 1)2(a2 − 12c c2), Ω20 = a2(a+ 1)2(b2 − 12c c2),
Ω12 = −12ab2(a+ 1)(b+ 1)2c2, Ω21 = −12a2b(a+ 1)2(b+ 1)c2,
Ω03 = −4b3(b+ 1)3c2, Ω30 = −4a3(a+ 1)3c2.

If a = b = −1 (i.e., the all coefficients Ωij are equal zero), then Eq.

(3.19) is satisfied for c2 =

√
c+ c1
c
√
c

.

Another two cases can be discussed similar to the above case and we
can get the following lemma:

lemma 3.6. Let M be a quadric surface of the first kind in Euclidean
3-space E3. Then, the following are equivalent:

(1): M is nonlinear Weingarten surface of the second type satisfying

some equations H2 + c1K
√
K =

√
c+ c1
c
√
c

.

(2): M is nonlinear Weingarten surface of the second type satisfying

some equations K2
II + c1K

√
K =

√
c+ c1
c
√
c

.

(3): M is nonlinear Weingarten surface of the second type satisfying

some equations H2
II + c1K

√
K =

√
c+ c1
c
√
c

.

(4): M represents a sphere which can be written as Ψ(u, v) =(
u, v,

√
c− u2 − v2

)
.
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4. Quadric surfaces - the second kind

Consider M a quadric surface of the second kind in E3 and satisfy
the equation (2.10). Thus, the surface M can be written as

(4.1) r(u, v) =
(
u, v,

a

2
u2 +

b

2
v2
)
.

Following to similar steps that considered in the study of the surface
(3.1), the straightforward computation on the surface (4.1), gives the
Gaussian curvature K, the mean curvature H, the second Gaussian
curvature KII and the second mean curvature HII , respectively:

(4.2) K =
a b

∆2
,

(4.3) H =
(a+ b) + a b

[
a u2 + b v2

]

2∆
3
2

,

(4.4) KII =
(a+ b)− (a− b)

[
a2u2 − b2v2

]

2∆
3
2

,

(4.5) HII =
(2a− b)a2u2 + (2b− a)b2v2 − (a+ b)

2∆
3
2

,

where ∆ = 1 + a2u2 + b2v2.

Considering the obtained quantities (4.2), (4.3), (4.4) and (4.5), we
have the following:

lemma 4.1. Let M be a quadric surface of the second kind. Then,
the following are satisfied:

(1): M is non developable surface.

(2): M is non minimal surface.

(3): M is non II-minimal surface.

(4): M is non II-flat surface.

4.1. Weingarten quadric surfaces - the second kind

In this section, we discuss Weingarten property of the surface (4.1)
through the differentiation of their curvatures respect to the parameters
u and v. In this case , we have
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(4.6)





Ku = −4a3b u

∆3
,

Kv = −4a b3v

∆3
,

(4.7)





Hu = − a2

2∆
5
2

[
(3a+ b) + a2b u2 + (3a− 2b)b2v2

]
u,

Hv = − b2

2∆
5
2

[
(a+ 3b)− (2a− 3b)a2u2 + a b2v2

]
v,

(4.8)





(KII)u =
a2

2∆
5
2

[
(a− b)a2u2 − 5(a− b)b2v2 − (5a+ b)

]
u,

(KII)v =
b2

2∆
5
2

[
5(a− b)a2u2 − (a− b)b2v2 − (a+ 5b)

]
v,

and

(4.9)





(HII)u =
a2

2∆
5
2

[
(7a+ b)− (2a− b)a2u2 + (7a− 8b)b2v2

]
u,

(HII)v =
b2

2∆
5
2

[
(a+ 7b)− (8a− 7b)a2u2 + (a− 2b)b2v2

]
v.

Considering the above equations, it easily seen that

(4.10)





Φ
(
H,K

)
=

4a3b3(b− a)u v

∆9/2
,

Φ
(
KII ,K

)
=

8a3b3(b− a)u v

∆9/2
,

Φ
(
HII ,K

)
=

12a3b3(b− a)u v

∆9/2
,

Φ
(
KII ,H

)
=

a2b2(b2 − a2)u v

2∆3
,

Φ
(
HII ,H

)
=

a2b2(a2 − b2)u v

∆3
,

Φ
(
KII ,HII

)
=

a2b2(b2 − a2)u v

2∆3
.

According to the mentioned calculations, all the jacobi functions given
in (4.10) are equal zero if and only if the constants a and b are equal.
Thus, we formulate the following

lemma 4.2. Let M be a quadric surface of the second kind in Eu-
clidean 3-space E3. Then, the following are equivalent:

(1): M is a Weingarten surface of type Φ(H,K) = 0.
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(2): M is a Weingarten surface of type Φ(KII ,K) = 0.
(3): M is a Weingarten surface of type Φ(HII ,K) = 0.
(4): M is a Weingarten surface of type Φ(KII ,H) = 0.
(5): M is a Weingarten surface of type Φ(HII ,H) = 0.
(6): M is a Weingarten surface of type Φ(KII ,HII) = 0.

(7): M is an elliptic paraboloid: Ψ(u, v) =
(
u, v,

a

2
(u2 + v2)

)
.

4.2. Quadric surfaces - the second kind with non-zero con-
stant curvatures

Here, depending on Eqs. (4.2)-(4.5), we can discuss the non-zero
constant curvatures property of the quadric surface (4.1) as the following

If the Gaussian curvature K is non-zero constant, we can write (4.2)
in the form:

0 = K∆2 − a b =
2∑

i,j=0

Ωij u
2i v2j

where the non-zero coefficients Ωij are

(4.11)





Ω00 = K − a b, Ω01 = 2b2K,
Ω10 = 2a2K, Ω11 = 2a2 b2K,
Ω02 = b4K, Ω20 = a4K,

From the equation (4.11), the Gaussian curvature is constant if and only
if a = b = 0 which is contradiction.

Similarly, by the straightforward computations and discussion as above
for the remainder three cases of constant mean, second mean and second
Gaussian curvatures, we can obtain the following lemma:

lemma 4.3. Let M be a quadric surface of the second kind in Eu-
clidean 3-space E3. Then, the following are satisfied: (1): M has no
constant Gaussian curvature. (2): M has no constant mean curvature.
(3): M has no constant second Gaussian curvature. (4): M has no
constant second mean curvature.

4.3. Linear and nonlinear Weingarten quadric surfaces of
the second kind

In the following, firstly we shall study some special relations that
related to the linear Weingarten property which in the form A+ c1B =
c2, where, (A,B) ∈ {(HII ,H), (KII , H), (KII ,HII)}, we start as follows.
Consider the following equation

(4.12) HII + c1H = c2.
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After substituting by (4.3) and (4.5), it becomes

4∆3
[(
HII + c1H

)2 − c22

]
=

3∑

i,j=0

Ωij u
2i v2j = 0,

where

(4.13)





Ω00 = (a+ b)2(c1 − 1)2 − 4c22,
Ω01 = 2b2

[
2b2(c1 − 1) + a2(c1 − 1)2 + ab(c21 − 1)− 6c22,

Ω10 = 2a2
[
2a2(c1 − 1) + b2(c1 − 1)2 + ab(c21 − 1)− 6c22,

Ω11 = 2a2b2
[
2(a2 + b2)(c1 − 1) + ab(5− 2c1 + c21)− 12c22

]
,

Ω02 = b4
[
4ab(c1 − 1) + a2(c1 − 1)2 + 4(b2 − 3c22)

]
,

Ω20 = a4
[
4a2 + 4ab(c1 − 1) + b2(c1 − 1)2 − 12c22

]
,

Ω21 = −12a4b2c22, Ω03 = −4b6c22, Ω30 = −4a6c22.

When Ω30 = 0, we have c2 = 0. Therefore, Ω00 = (a+b)2(c1−1)2, which
gives c1 = 0. Now, since Ω20 = 4b6 = 0 and Ω02 = 4a6 = 0, it gives a
contradiction. Under the previous, we consider the following lemma:

lemma 4.4. Let M be a quadric surface of the second kind in Eu-
clidean 3-space E3. Then, there are no constants c1 and c2 such that:
(1): M is linear Weingarten surface satisfying HII + c1H = c2. (2):
M is linear Weingarten surface satisfying KII + c1H = c2. (3): M is
linear Weingarten surface satisfying KII + c1HII = c2.

Secondly, we discuss also for quadric surfaces of the second kind the
two different types of nonlinear Weingarten property as we have done
for the first kind: The first type: C2+ c1K = c2, C ∈ {H,HII ,KII}.
Here, we start with the following equation

(4.14) H2 + c1K = c2.

Using (4.3) and (4.4), we can write the above equation in the form:

4∆3
[
H2 + c1K − c2

]
=

3∑

i,j=0

Ωij u
2i v2j = 0

with

(4.15)





Ω00 = (a+ b)2 + 2abc1 − 4c2,
Ω01 = 2b2

[
a2 + ab(1 + c1)− 6c2

]
,

Ω10 = 2a2
[
b2 + ab(1 + c1)− 6c2

]
,

Ω11 = 2a2b2(ab− 12c2),
Ω02 = b4(a2 − 12c2), Ω20 = a4(b2 − 12c2),
Ω12 = −12a2b6c2, Ω21 = −12a4b2c2,
Ω03 = −4b6c2, Ω30 = −4a6c2.
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From (4.15), if Ω30 = 0, we have c2 = 0 and therefore Ω20 = a4b2 = 0.
This is a contradiction. We give the following lemma

lemma 4.5. For some constants c1 and c2, there are no quadric
surfaces of the second kind in E3satisfying C2 + c1K = c2 with C =
{H,KII , HII}.

The second type: C2 + c1K
√
K = c2, C ∈ {H,HII ,KII}. The

following equation includes the second type, we write it as follows

(4.16) H2 + c1K
√
K = c2.

The use of Eqs. (4.2) and (4.3) change Eq. (4.16) to the form

4ω3
[
H2 + c1K

√
K − c2

]
=

3∑

i,j=0

Ωij u
2i v2j = 0

where its coefficients are

(4.17)





Ω00 = (a+ b)2 + 2abc1
√
ab− 4c2,

Ω01 = 2b2
[
a2 + ab− 6c2

]
,

Ω10 = 2a2
[
b2 + ab− 6c2

]
,

Ω11 = 2a2b2(ab− 12c2),
Ω02 = b4(a2 − 12c2), Ω20 = a4(b2 − 12c2),
Ω12 = −12a2b6c2, Ω21 = −12a4b2c2,
Ω03 = −4b6c2, Ω30 = −4a6c2.

If Ω30 = 0, then we have c2 = 0 , thus Ω20 = a4b2 = 0. This contradicts
the fact that a > 0 and b > 0. So, we present the following lemma

lemma 4.6. For some constants c1 and c2, there are no quadric
surfaces of the first kind in E3satisfying C2 + c1K

√
K = c2 with C =

{H,KII , HII}.

5. Conclusion

In this work, we have disscused the two kinds of quadric surfaces

Ψ(u, v) =
(
u, v,

√
a u2 + b v2 + c

)
and r(u, v) =

(
u, v, a2u

2 + b
2v

2
)

in

Euclidean 3-space E3. These surfaces satisfying the Jacobi condition
respect to their curvatures. In addition, the linear Weingarten property
is investigated. Moreover, special types of nonlinear Weingarten quadric
surfaces are studied. Finally, some important results are obtained.
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