• Title/Summary/Keyword: search result

Search Result 2,585, Processing Time 0.03 seconds

Development of a XML Web Services Retrieval Engine (XML 웹 서비스 검색 엔진의 개발)

  • Sohn, Seung-Beom;Oh, Il-Jin;Hwang, Yun-Young;Lee, Kyong-Ha;Lee, Kyu-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.121-140
    • /
    • 2006
  • UDDI (Universal Discovery Description and Integration) Registry is used for Web Services registration and search. UDDI offers the search result to the keyword-based query. UDDI supports WSDL registration but it does not supports WSDL search. So it is required that contents based search and ranking using name and description in UDDI registration information and WSDL. This paper proposes a retrieval engine considering contents of services registered in the UDDI and WSDL. It uses Vector Space Model for similarity comparison between contents of those. UDDI registry information hierarchy and WSDL hierarchy are considered during searching process. This engine suppports two discovery methods. One is Keyword-based search and the other is template-based search supporting ranking for user's query. Template-based search offers how service interfaces correspond to the query for WSDL documents. Proposed retrieval engine can offer search result more accurately than one which UDDI offers and it can retrieve WSDL which is registered in UDDI in detail.

  • PDF

A Social Search Scheme Considering User Preferences and Popularities in Mobile Environments

  • Bok, Kyoungsoo;Lim, Jongtae;Ahn, Minje;Yoo, Jaesoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.744-768
    • /
    • 2016
  • As various pieces of information can be provided through the web, schemes that provide search results optimized for individual users are required in consideration of user preference. Since the existing social search schemes use users' profiles, the accuracy of the search deteriorates. They also decrease the reliability of a search result because they do not consider a search time. Therefore, a new social search scheme that considers temporal information as well as popularities and user preferences is required. In this paper, we propose a new mobile social search scheme considering popularities and user preferences based on temporal information. Popularity is calculated by collecting the visiting records of users, while user preference is generated by the actual visiting information among the search results. In order to extract meaningful information from the search target objects that have multiple attributes, a skyline processing method is used, and rank is given to the search results by combining the user preference and the popularity with the skyline processing result. To show the superiority of the proposed scheme, we conduct performance evaluations of the existing scheme and the proposed scheme.

Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

  • Mei, Zhuolin;Wu, Bin;Tian, Shengli;Ruan, Yonghui;Cui, Zongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5671-5693
    • /
    • 2017
  • With the rapid development of cloud computing, more and more data owners are motivated to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive data should be encrypted before being outsourced to the cloud. However, this results that effective data utilization becomes a very challenging task, such as keyword search over ciphertexts. Although many searchable encryption methods have been proposed, they only support exact keyword search. Thus, misspelled keywords in the query will result in wrong or no matching. Very recently, a few methods extends the search capability to fuzzy keyword search. Some of them may result in inaccurate search results. The other methods need very large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy keyword search methods do not support access control. In our paper, we propose a searchable encryption method which achieves fuzzy search and access control through algorithm design and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is small and the search results are accurate. We present word pattern which can be used to balance the search efficiency and privacy. Finally, we conduct extensive experiments and analyze the security of the proposed method.

Bounding the Search Number of Graph Products

  • Clarke, Nancy Ellen;Messinger, Margaret-Ellen;Power, Grace
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.175-190
    • /
    • 2019
  • In this paper, we provide results for the search number of the Cartesian product of graphs. We consider graphs on opposing ends of the spectrum: paths and cliques. Our main result determines the pathwidth of the product of cliques and provides a lower bound for the search number of the product of cliques. A consequence of this result is a bound for the search number of the product of arbitrary graphs G and H based on their respective clique numbers.

Partitioning and Merging an Index for Efficient XML Keyword Search (효율적 XML키워드 검색을 인덱스 분할 및 합병)

  • Kim, Sung-Jin;Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.754-765
    • /
    • 2006
  • In XML keyword search, a search result is defined as a set of the smallest elements (i.e., least common ancestors) containing all query keywords and a granularity of indexing is an XML element instead of a document. Under the conventional index structure, all least common ancestors produced by the combination of the elements, each of which contains a query keyword, are considered as a search result. In this paper, to avoid unnecessary operations of producing the least common ancestors and reduce query process time, we describe a way to construct a partitioned index composed of several partitions and produce a search result by merging those partitions if necessary. When a search result is restricted to be composed of the least common ancestors whose depths are higher than a given minimum depth, under the proposed partitioned index structure, search systems can reduce the query process time by considering only combinations of the elements belonging to the same partition. Even though the minimum depth is not given or unknown, search systems can obtain a search result with the partitioned index, which requires the same query process time to obtain the search result with non-partitioned index. Our experiment was conducted with the XML documents provided by the DBLP site and INEX2003, and the partitioned index could reduce a substantial amount of query processing time when the minimum depth is given.

대학 졸업예정자들의 직업탐색활동의 변화와 개인적 특성의 영향에 관한 연구

  • An, Gwan-Yeong
    • 한국산학경영학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.1-9
    • /
    • 2005
  • Job search research has been criticized for failing to study the dynamics and change of the job search process. A lot of previous researches have used cross-sectional designs and treated job search as a static process. As a result, job search research has failed to examine how job seekers' behaviors change during the course of their search. This paper examined changes In job search behaviors(preparatory and active job search behavior, and job search intensity) and the effects of individual difference variables(self-esteem, self-efficacy, extroversion, agreeableness, conscientiousness, openness) on job search behaviors. Data were gathered from 404 university students who had not found employment at the time of beginning of second semester The results of t-test pairs indicated that job seeking students increased their preparatory job search behavior and active job search behavior, but didn't job search intensity. The results of multiple regression showed that self-efficacy had strong relationship with preparatory and active job search behavior, and job search intensity, but self-esteem had not any relationship with them. Among big-5 personality, extroversion had relationship with active job search behavior and job search intensity, and agreeableness only with job search intensity.

  • PDF

A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results (논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법)

  • Bae, Kyoung-Man;Hwang, Jae-Won;Ko, Young-Joong;Kim, Jong-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.214-221
    • /
    • 2010
  • The search-results clustering problem is defined as the automatic and on-line grouping of similar documents in search results returned from a search engine. In this paper, we propose a new search-results clustering algorithm specialized for a paper search service. Our system consists of two algorithmic phases: Category Hierarchy Generation System (CHGS) and Paper Clustering System (PCS). In CHGS, we first build up the category hierarchy, called the Field Thesaurus, for each research field using an existing research category hierarchy (KOSEF's research category hierarchy) and the keyword expansion of the field thesaurus by a word clustering method using the K-means algorithm. Then, in PCS, the proposed algorithm determines the category of each paper using top-down and bottom-up methods. The proposed system can be used in the application areas for retrieval services in a specialized field such as a paper search service.

Personalized and Social Search by Finding User Similarity based on Social Networks (소셜 네트워크 기반 사용자 유사성 발견을 통한 개인화 및 소셜 검색)

  • Park, Gun-Woo;Oh, Jung-Woon;Lee, Sang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.683-690
    • /
    • 2009
  • Social Networks which is composed of network with an individual in the center in a web support mutual-understanding of information by searching user profile and forming new link. Therefore, if we apply the Social Network which consists of web users who have similar immanent information to web search, we can improve efficiency of web search and satisfaction of web user about search results. In this paper, first, we make a Social Network using web users linked directly or indirectly. Next, we calculate Similarity among web users using their immanent information according to topics, and then reconstruct Social Network based on varying Similarity according to topics. Last, we compare Similarity with Search Pattern. As a result of this test, we can confirm a result that among users who have high relationship index, that is, who have strong link strength according to personal attributes have similar search pattern. If such fact is applied to search algorithm, it can be possible to improve search efficiency and reliability in personalized and social search.

통계관련 사이트의 검색엔진에 관한 고찰

  • 이승우
    • Journal for History of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.82-87
    • /
    • 1999
  • The Internet has developed the computer and communications world. The Internet has tons of millions of sites. To find the specific information, we use a search engine. All search engines are operated by keyword against a database, but many different factors affect the result of search by engines. In this paper, we investigate the development of the Internet and try to find the differences among the most popular search engines.

  • PDF

Personalized Search Service in Semantic Web (시멘틱 웹 환경에서의 개인화 검색)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.533-540
    • /
    • 2006
  • The semantic web environment promise semantic search of heterogeneous data from distributed web page. Semantic search would resuit in an overwhelming number of results for users is increased, therefore elevating the need for appropriate personalized ranking schemes. Culture Finder helps semantic web agents obtain personalized culture information. It extracts meta data for each web page(culture news, culture performance, culture exhibition), perform semantic search and compute result ranking point to base user profile. In order to work efficient, Culture Finder uses five major technique: Machine learning technique for generating user profile from user search behavior and meta data repository, an efficient semantic search system for semantic web agent, query analysis for representing query and query result, personalized ranking method to provide suitable search result to user, upper ontology for generating meta data. In this paper, we also present the structure used in the Culture Finder to support personalized search service.