
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, Nov. 2017 5671
Copyright ⓒ2017 KSII

Fuzzy Keyword Search Method over
Ciphertexts supporting Access Control

Zhuolin Mei1, Bin Wu2, Shengli Tian3, Yonghui Ruan4, and Zongmin Cui2,*

1School of Information Science and Technology, Huizhou University, Huizhou, China
2School of Information Science and Technology, Jiujiang University, Jiujiang, China

3School of Information Engineering, Xuchang University, Xuchang, Henan, China
4Department of Information Science and Technology, Wenhua College, Wuhan, Hubei, China

[e-mail: cuizm01@gmail.com]
*Corresponding author: Zongmin Cui

Received Jaunuary 8, 2017; revised May 25, 2017; accepted June 17, 2017;

published November 30, 2017

Abstract

With the rapid development of cloud computing, more and more data owners are motivated
to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive
data should be encrypted before being outsourced to the cloud. However, this results that
effective data utilization becomes a very challenging task, such as keyword search over
ciphertexts. Although many searchable encryption methods have been proposed, they only
support exact keyword search. Thus, misspelled keywords in the query will result in wrong or
no matching. Very recently, a few methods extends the search capability to fuzzy keyword
search. Some of them may result in inaccurate search results. The other methods need very
large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy
keyword search methods do not support access control. In our paper, we propose a searchable
encryption method which achieves fuzzy search and access control through algorithm design
and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is
small and the search results are accurate. We present word pattern which can be used to
balance the search efficiency and privacy. Finally, we conduct extensive experiments and
analyze the security of the proposed method.

Keywords: fuzzy keyword, search, access control, encryption, cloud computing

A preliminary version of this paper appeared in ACISP 2017, July 3-5, Auckland, New Zealand. This version
includes a concrete procedure of index generation and decryption, an optimization method and the security analysis
under collusion attack. The optimization method is very important in our method. Without the optimization method,
the efficiency performance of our method would be no better than the other methods. Thus the optimization method
is an very important contribution in our paper. This research was supported by the Jiangxi Provincial Natural
Science Foundation of China [No. 20161BAB202036] and the National Natural Science Foundation of China
[grant number 61762055]. We express our thanks to Dr. Liang Zhou who checked our manuscript.

https://doi.org/10.3837/tiis.2017.11.027 ISSN : 1976-7277

5672 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

1. Introduction

In recent years, with the rapid development of cloud computing, more and more sensitive
information are being centralized into the cloud, such as emails, government documents, etc.
By outsourcing data to the cloud, data owners can enjoy various advantages by utilizing high
quality of cloud services, such as data storage, maintenance and applications [1, 2, 3].
However, the cloud is not fully trusted by the data owners. Thus, the privacy of sensitive data
in the cloud naturally becomes a primary concern of data owners. To mitigate the concern,
sensitive data is usually encrypted before outsourcing to prevent from unauthorized access [4,
5]. Since the data is encrypted, the searching of documents which contains specific keywords
becomes rather difficult.

To solve the problem above, many searchable encryption methods [6, 7, 8, 9, 10, 11, 12, 13]
have been proposed. However, they only support exact keyword matching. Misspelled
keywords in the query will result in wrong or no matching. Very recently, a few works [1, 4,
14, 15, 16, 17, 18] extend the exact keyword matching to approximate keyword matching, also
known as fuzzy keyword search. According to the techniques adopted in fuzzy keyword
search methods, they could be classified into two classes: (1) Wildcard based fuzzy keyword
search methods [1, 14, 16]; (2) Locality-Sensitive Hashing (LSH) [19] and Bloom Filter (BF)
[20] based fuzzy keyword search methods [4, 15, 17]. In wildcard based fuzzy keyword search
methods, data owner has to build an expanded index that covers all the possible misspelling
keywords, which leads to a very large index and inefficient keyword search. In LSH and BF
based fuzzy keyword search methods, the search is very efficient. However, these methods
may miss out some correct search results. This is because that the adopted technique, LSH,
only maps the similar items to the same hash value with a possibility. Additionally, the above
fuzzy keyword search methods do not support access control, which is an important
requirement of data sharing in cloud computing.

In this paper, we propose a method which not only supports fuzzy keyword search but also
access control. For each document, the data owner defines a document policy, which consists
of several error-tolerance policies and one access control policy. An error-tolerance policy
represents the maximal number of misspellings a user can make when searching a keyword.
The access control policy represents the users who have the privilege to search the document.
Next, according to the document policy, the data owner generates an index for the document
by using the Ciphertext-Policy Attribute-based Encryption (CP-ABE) method. Then, the data
owner assigns secret keys and attributes to users according to their identifiers. A user can
retrieve a document, if and only if (1) the user’s attributes satisfy the access control policy in
the document policy, and (2) the searched word in the user’s query satisfies one
error-tolerance policy in the document policy. We present word pattern which could be used to
balance the search efficiency and privacy. Finally, we give a fuzzy keyword search algorithm.
Compared with wildcard based fuzzy keyword search methods [1, 14, 16], our method has
smaller index size and is more efficient. Compared with LSH and BF based fuzzy keyword
search methods [4, 15, 17], our method can accurately obtain all the search results. Through
extensive experiments and rigorous security analysis, we show that our method is efficient and
secure. The contributions of this paper are listed as follows:
(1) We propose a method which supports both the fuzzy keyword search and access control.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5673

(2) We present word pattern and construct a fuzzy keyword search algorithm. By utilizing
word pattern, the search efficiency and privacy can be balanced.
(3) We implement our method. The experimental results show that our method is efficient. We
analyze the security of our method, and our proposed method is secure under the known
ciphertext model.

The reminder of this paper is organized as follows: Section 2 is the preliminaries. Section 3
is word pattern. Section 4 is the construction of our fuzzy keyword search method. Section 5
shows the experiment results. Section 6 represents the security analysis and proofs. Section 7
is the related work.

2. Preliminaries
Definition 1. A ciphertext-policy attribute based encryption (CP-ABE) [21] consists of five
algorithms: Setup, Encrypt, KeyGen, Delegate and Decrypt.

() (,)Setup PK MKλ → . The setup algorithm takes the security parameter λ as input, and
outputs a public key PK and a master key MK.

(, ,)Encrypt PK M P CT→ . The encryption algorithm takes the public key PK , a message
M, and a policy P as input. The algorithm encrypts M and outputs a ciphertext CT.

(,)KeyGen MK S SK→ . The key generation algorithm takes the master key MK and an
attribute set S as input. It outputs a private key SK.

 (,)Delegate SK S SK→ . The delegate algorithm takes as input a secret key SK for the

attributes in S and a set S S⊆ . It outputs a secret key SK for the attributes in S .
(, ,)Decrypt PK CT SK M→ . The decryption algorithm takes as input the public key PK ,

a ciphertext CT (CT contains a policy P), and a private key SK (SK contains the attribute set S).
If S satisfies P, then the algorithm decrypts CT and outputs M.

There are some facts related to groups with efficiently computable bilinear maps which are
used in CP-ABE [21]. Let 0G and 1G be two multiplicative cyclic groups of prime order p.
Let g be a generator of 0G and e be a bilinear map, 0 0 1:e G G G× → . The bilinear map e has
the following properties: (1) Bilinearity: For all 0,u v G∈ and , pa b Z∈ , we have

(,) (,)a b abe u v e u v= . (2) Non-degeneracy: (,) 1e g g ≠ .
Definition 2. Edit distance [1]. Edit distance is a well-studied method to quantitatively

measure the word similarity. The edit distance (,)ed w w′ between two words w and w′ is the
number of operations required to transform one of them into the other. The operations are
substitution, deletion and insertion. Substitution is the operation that changes one character to
another in a word. Deletion is the operation that deletes one character from a word. Insertion is
the operation that inserts one character into a word.

3. Word Pattern
In this paper, we propose word pattern, word pattern function, and character-appearing order.
The word pattern could be used to balance the search efficiency and security. The word pattern
function is used to compute the word pattern. The character-appearing order provides the
correct way to perform fuzzy keyword search.

5674 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

Definition 3. Word pattern function (,)MF w i° is defined as below
| |

1

(() ()) mod , 1
(,)

(() ()) mod ,1 | |

i w
M Mw w

M i i
M Mw w

H c H c sp i
F w i

H c H c sp i w

°

° °

° °

°
− °

 − ==
− < ≤

, where MH is a hash function, i
w

c ° is the i th character in w° (w° is a keyword w or a
searched word w′) and sp is a positive integer defined by data owner.
Definition 4. ((,1), (, 2),..., (,| |))M M Mw

M F w F w F w w°
° ° ° °= is the word pattern of w° .

(,)i
Mw

m F w i°
°= is the word pattern value of the i th character in w° , where 1,...,| |i w°= .

Let charS denote the character set which is used to spell all the keywords, and | |charS
denote the number of characters in charS . According to the Definition 3, a word pattern value

corresponds to average 2 /| |charS sp two-contiguous characters. Given a word pattern value,
one can not know the word pattern value is obtained by calculating which two-contiguous
characters. Data owner could use sp to balance the privacy (keyword privacy and searched
word privacy) and search efficiency: (1) Smaller sp means there are more characters who
have the same word pattern value. Thus, when decreasing sp , the security could be enhanced.
However, different two-contiguous characters who have the same word pattern value would
affect the efficiency of fuzzy keyword search (see Section 4.5). (2) Larger sp means there are
fewer characters who have the same word pattern value. Thus, when increasing sp , the search
efficiency could be improved, but the security decreases.
Definition 5. Given a word 1 2 | |... w

w w w
w c c c

°

° ° °
° = , for i j∀ < (, [1,| |]i j w°∈), the character

appearing order of w° is that i
w

c ° is before j
w

c ° .
As keywords and searched words are encrypted, it is difficult to measure the word similarity

according to edit distance. Fortunately, we find a method to judge whether (,) wed w w e′ ≤
according to | |Ow w′∩ (see Theorem 2 in Section 4.4), where | |Ow w′∩ is the maximal
number of characters which are the same in w and 'w in the character appearing order of w
and 'w . For example, given a keyword w cat= and a searched word 'w acat= , it is easy to
compute | | 3Ow w′ =∩ .

4. Construction of Fuzzy Keyword Search supporting Access Control
In our scheme, the cloud is considered to be ”honest-but-curious” [1, 14, 15, 17]. Thus the
cloud would honestly follow the designated protocols and procedures to fulfill the service
provider’s role, while it may analyze the information stored and processed on the cloud in
order to learn additional information about its customers. In our scheme, first data owner
builds indexes for documents and encrypts documents using a secure encryption method, such
as AES. Next, the data owner stores the encrypted documents and indexes on the cloud. Then,
the data owner distributes secret keys to users according to their identifiers. A user uses his/her
secret key to generate trapdoors for the searched words and sends the trapdoors to the cloud for
fuzzy keyword search. Upon receiving the trapdoors, the cloud server performs fuzzy keyword
search and replies with the encrypted documents which contain the searched words.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5675

4.1 System Setup

The data owner defines a finite character set charS and a finite attribute set attrS . charS

contains all the characters which are used to spell keywords and attrS contains all the
attributes. For example, { , ,..., , , ,..., , , , /,...}charS a b z A B Z= − + . For a school of computer

science, {attrS = ,student ,professor ,computerScience ...} . Next, the data owner runs the
algorithm Setup [21]. Setup takes the security parameter λ as input. It outputs the public
key PK and master key MK . The public key PK is 1/

0 , , , , (,)G g h g f g e g gβ β α= = and

the master key MK is , gαβ , where 0G is a bilinear group of prime order p with generator
g , α and β are randomly chosen from pZ . Then, the data owner chooses a hash function

MH and a positive integer sp to construct the word pattern function MF . Finally, the data
owner publishes MF , but keeps MK and PK secretly.

4.2 Building Index

For each document , the data owner defines a document policy Dp . Dp consists of two
kinds of policies: (i) Error-tolerance policy; (ii) Access control policy. For each keyword of
 , the error-tolerance policy limits the maximal typos that a user could make when searching
a keyword. For the document , the access control policy represents who has the privilege to
search the keywords of . In the following sections, we first describe the error-tolerance
policy and access control policy respectively. Then, we show how to construct Dp by using
error-tolerance policy and access control policy. Finally, we show how to generate the index

DIdx for the document under Dp .
Before describing the policies in our method, we want to explain the threshold gate in detail.

In our method, error-tolerance policy, access control policy and document policy can be
transform into tree structures. In these tree structures, each internal node is associated with a
threshold gate and each leaf is associated with a character (or an attribute). If an internal node
is associated with the threshold gate (,)T n m , it means that (i) the internal node has m
children, (ii) (,)T n m returns true if and only if there are at least n children who return true,
(iii) a leaf returns true if and only if the character (or attribute) associated with the leaf matches
the character (or attribute) in the query of a user. For example, OR could be represented as

(1,)T m , AND could be represented as (,)T m m .

Fig. 1. The tree structures of error-tolerance policy, access control policy and document policy

5676 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

Error-tolerance Policy. For each keyword w of the document , the data owner defines the
maximal error-tolerance value we and an error-tolerance policy w

etp . w
etp could be represented

as a three-level tree, denoted by
et

w
pT . As shown in Fig. 1 (a), the root in

et

w
pT is composed of a

threshold gate (1, 1)wT e + . The root has 1we + children, which are numbered from 1 to
1we + . The t th child is composed of the threshold gate (| | 1,| |)wT w e t w− + − , where

1, 2,..., 1wt e= + . For each subtree of
et

w
pT , iL is the i th leaf of the subtree and iL is

associated with the tuple , , (,)i
w Mc i F w i< > , where i

wc is the i th character in w , i is the

order of i
wc in w , and (,)MF w i is the word pattern value of i

wc .
These threshold gate (| | 1,| |)wT w e t w− + − (1,..., 1wt e= +) could be used to determine

whether a searched word w′ satisfies (,) wed w w e′ ≤ . Specifically, our method uses the
threshold gate (| | 1,| |)wT w e t w− + − to perform fuzzy keyword search: If | | | |w w′≥ , our
method chooses the threshold gate in which 1t = ; If | | | | 0w w′ − > , our method chooses the
threshold gate in which | | | | 1t w w′= − + (see Theorem 2 in Section 4.4). The order i
provides the correct comparison order during the fuzzy keyword search (see the fuzzy
keyword search algorithm in Section 4.5).
Access Control Policy. For each document , the data owner defines an access control
policy D

acp . D
acp could be represented as a tree, denoted by D

acp
T . Internal nodes in D

acp
T are

composed of threshold gates and the leaves are associated with attributes. Fig. 1 (b) shows the
tree structure of the access control policy D

acp =professor OR (student AND computerScience).

For this access control policy D
acp , it is true if and only if the user is a professor or a student of

computer science. By setting similar access control policies, our method could realize the
access control when performing fuzzy keyword search.
Document Policy. For each document , after constructing the access control policy and
error tolerance policies for all the keywords in , the data owner constructs a document
policy Dp . Suppose (1) 1 2

1 2{ , ,... | , ,... }
D

w w
et et wp p w w S∈ is the set of all the error-tolerance

policies of keywords in , where
DwS is the keyword set of , (2) D

acp is the access control

policy of . The formal description of Dp is | |1(...)SwD
ww D

D et et acp p p p= ∨ ∨ ∧ , where | |
DwS

is the total of keywords in
DwS . Because | |1 ,..., SwD

ww
et etp p and D

acp could be represented as trees
| |1 ,..., SwD

et et

ww
p pT T and D

acp
T , the policy Dp could be represented as

DpT (as shown in Fig. 1 (c)) .

Index Generation. For each document , the data owner runs the algorithm
(, || 0 ,)

D

l
D pEncrypt PK ID T [21] to generate the index, where PK is the public key, DID is

the identity of and
DpT is the document policy of . Note that, the data owner appends l

0s to the identity DID , denoted by || 0l
DID . In this way, the cloud could check whether a

decryption is valid [22]. If a decryption outputs a plaintext that there are l 0s at the end of the
plaintext, then the decryption is valid. Otherwise, it is invalid.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5677

We briefly describe the encryption algorithm Encrypt (details are in [21]). In [21], the
children of an internal node in

DpT are numbered from 1 to num . The function ()index x
returns such a number associated with the node x . The function ()parent x returns the
parent of the node x . Encrypt first chooses a polynomial xq for each node in the tree

DpT .

These polynomials are chosen in a top-down manner, starting from the root of
DpT . For each

node x (suppose the threshold gate of x is (,)x xT n m) in
DpT , set the degree of xq to 1xn − .

For the root R of
DpT , Encrypt chooses a random ps Z∈ and sets (0)Rq s= . For any

other node x , Encrypt sets ()(0) (())x parent xq q index x= and randomly chooses xd other

points to completely define xq . Then, Encrypt [21] encrypts || 0l
DID under Dp as follows.

(0) (0)(, (|| 0) (,) , , (': , ()))y y

D

q ql s s
p D y yCT T C ID e g g C h y Y C g C H f yα= = = ∀ ∈ = = ,

where Y is the set of leafs in
DpT , ()f y is the function which returns the character or

attribute associated with y , and H is a hash function. Note that, the threshold gates now have
been embedded in the ciphertexts by using this method.

Fig. 2. The tree structure *

DpT of Dp

In [21], the characters associated with the leafs of
DpT are required to be stored in plaintext.

However, data owner should protect the privacy of keywords in indexes. Thus, we transform
the tree

DpT into a new tree *
DpT (see Fig. 2) to hide the characters of keywords. Then, the data

owner could construct the index DIdx according to the ciphertext CT of || 0l
DID .

*(, (|| 0) (,) , ,
D

l s s
D p DIdx T C ID e g g C hα= = =

: ,
D ii w ww S e∀ ∈

()i

et

w
k Py Y T∀ ∈ and ky is the leaf of the t th subtree of i

et

w
PT :

(0) (0), ' (()) , , , , (,),y yk k

k k

q q
y y k M iC g C H f y i t k F w k= =

() :D
acp

y Y T∀ ∈
(0) (0), ' (())y yq q

y yC g C H f y= =

5678 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

, where
iwe is the maximal error-tolerance value of iw , ()kchar y is the character

i

k
wc

associated with the leaf node ky , ()kf y (or ()f y) returns the character (or attribute)

associated with the leaf ky (or y), ()i

et

w
pY T is the set of leafs of i

et

w
pT (| |1,...,

wDSi w=), ()D
acp

Y T

is the set of leafs of D
acp

T . For simplicity, in the following paragraphs,
(0) (0)'(, (()))y yk k

k k

q q
y y kC g C H f y= = is denoted by the notation k

wic
C . k

wic
C is the

ciphertext component corresponding to the k th character
i

k
wc in the keyword iw .

We observe that different documents may have the same keywords, and their indexes have
the same word patterns. Thus, adversaries may infer the keywords by obersving the word
patterns. Namely, if the word patterns of two keywords are the same, the adversaries may
guess the two keywords are the same. To prevent such attacks, the data owner could
randomize the keywords and word patterns. For each keyword | |1 ... i

i i

w
i w ww c c= in the document

 , first the data owner chooses an integer 1 iwa (1 0
iwa ≥) randomly, and next chooses 1 iwa

characters randomly, denoted by
11,..., wiaη η . Then, the data owner chooses 1 iwa positions in

iw randomly, and put
11,..., wiaη η at these positions. For simplicity, we use the notation R

iw

to denote the randomized iw . Then, the data owner computes the word pattern and

character-appearing order of R
iw . For each artificial character iη , the data owner chooses two

random values (',)
i i

C Cη η as the ciphertext component of iη , s.t. | | | |
i jyC Cη = and

| | | |' '
i jyC Cη = , where (, ')

j jy yC C is the ciphertext component of j
wc ′ and j

wc ′ is a character

randomly chosen from the keyword iw . According to [21],
jyC and '

jyC are
computationally indistinguishable from random values. Thus, after randomization, attackers
cannot distinguish which character is a real character or an artificial character according to the
word pattern values and ciphertext components. So, the index DIdx can prevent the statistical
attacks.

4.3 Trapdoor Generation
For each user u , the data owner runs the algorithm KeyGen [21] to generate the secret key.
In our method, the algorithm KeyGen takes as input the master key MK and

uchar attrS S∪

(charS is the character set which is used to spell all the keywords of documents, and
uattrS is

the attribute set distributed to u by the data owner). It outputs the secret key uSK for u .
KeyGen first randomly chooses a number γ from pZ , a number cγ from pZ for each

character charc S∈ , and a number aγ from pZ for each attribute
uattra S∈ . Then KeyGen

computes the secret key as
()/(, : () , , : () ,)' 'c c a a

uu char c c attr a aSK D g c S D g H c D g a S D g H a D gγ γ γ γα+γ β γ γ= = ∀ ∈ = ⋅ = ∀ ∈ = ⋅ =

Then, the data owner distributes the secret key uSK to the user u . For simplicity, in the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5679

following paragraphs, we use the notation cD to denote (() ,)'c c
c cD g H c D gγ γγ= ⋅ = . cD

is the secret key component corresponding to the character c .
The trapdoor generation for a searched word 1 | |... w

w ww c c ′
′ ′′ = is as follows. In the secret key

uSK of u , there are secret key components for all the characters. Thus, for each character in
w′ , u could find a corresponding secret key component. Then, u could generate a trapdoor

'wTd for w′ . The trapdoor wTd ′ is the tuple ,char attrTd Td< > , where

'
{ , , (,) | 1,...,| |}i

w
char c

Td D i F w i i w′ ′= < > = (
'

i
wc

D is the secret key component for the i th

character i
wc ′ of w′), and {(,) | }'

uattr a a attrTd D D a S= ∈ .

For the character c , the secret key component cD in different trapdoors are always the
same. Thus, adversaries may infer the searched word by obersving the secret key components.
To prevent such attacks, u could run the delegate algorithm Delegate [21] to generate new
secret keys. Then, for each search, u uses the new secret keys to generate a trapdoor. We also
observe that if the searched words are the same, their word patterns in the trapdoors are the
same. Thus, adversaries may also infer the searched word by obersving the word patterns. To
prevent such attacks, users could choose 2 'wa characters randomly, denoted by

2 '1,..., waµ µ ,
and use the same randomization method in Section 4.2 to randomize their trapdoors. Finally,
u sends the trapdoor wTd ′ to the cloud to perform search.

4.4 Theorem, Property and Optimization
In this section, we give some theorems, properties and an optimization approach. These

theorems and properties are the basis of our proposed method. Note that, the explanation of the
notation | |Ow w′∩ in the following Theorem 2 can be found in Section 3.
Theorem 1. w is a keyword of a document and w′ is a searched word. we (0we ≥) is the
maximal error-tolerance value of w . If (,) wed w w e′ ≤ , then there is
| | | | | |w ww e w w e′− ≤ ≤ + , where | |w and | |w′ denote the number of characters in w and w′
respectively.

As Theorem 1 is easy to be proofed, we do not give the proof of Theorem 1. Theorem 1 is
the necessary condition of (,) wed w w e′ ≤ . Thus, some keywords in indexes, which do not
meet users’ search requests, can be filtered out by using Theorem 1.
Theorem 2. w is a keyword of a document and w′ is a searched word. we (0we ≥) is the
maximal error-tolerance value of w . (,) wed w w e′ ≤ if and only if max| | | |O ww w w e′∩ ≥ −
(If | | | |w w′≥ , max| | | |w w= and min| | | ' |w w= ; Otherwise, max| | | |w w′= and min| | | |w w=).
Proof.
(1) The proof of "if (,) wed w w e′ ≤ , then there is max| | | |O ww w w e′∩ ≥ − ".
Case 1: minw could be transformed into maxw only by using substitutions and insertions.

Suppose max min| |Ow w n∩ = . As max min(,) wed w w e≤ , we can suppose max min(,)ed w w =

we k− , where k (0 wk e≤ ≤) is an integer. According to Definition 2, after one operation

5680 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

(substitution or insertion), the word minw could be transformed into a new word min 1w + .

min 1w + satisfies max min 1 max min(,) (,) 1ed w w ed w w+ = − and max min 1| | 1Ow w n+∩ = + . Thus, it
is easy to know that, after we k− operations (substitutions and insertions), the word minw
could be transformed into a new word min ()we kw + − . min ()we kw + − satisfies max min ()(,)

we ked w w + −

max min(,) () 0wed w w e k= − − = (note max min(,) wed w w e k= −) and max min ()| |
we k Ow w + −∩

()wn e k= + − . According to Definition 2, as there is max min ()(,) 0
we ked w w + − = , we have the

conclution max min ()we kw w + −= . Thus, we have max min () max| | | |
we k Ow w w+ −∩ = . Because there

are max min () max| | | |
we k Ow w w+ −∩ = and max min ()| | ()

we k O ww w n e k+ −∩ = + − , we have the

conclusion max| | ()ww n e k+ −= . Then, as max min| |Ow w n∩ = and 0 wk e≤ ≤ , there is

max min max| | | |O ww w w e∩ ≥ − . Namely, we have max| | | |O ww w w e′∩ ≥ − .
Case 2: Substitutions, insertions and deletions are required to transform minw into maxw .
To transform minw into maxw , substitutions and insertions can change the value of

max min| |Ow w∩ , but deletions can not change the value of max min| |Ow w∩ . Thus, if
substitutions, insertions and deletions are required to transform minw into maxw , the
conclusion max min max| | | |O ww w w e∩ ≥ − in Case 1 is still correct in Case 2. Namely, we have

max| | | |O ww w w e′∩ ≥ − .
(2) The proof of "if max| | | |O ww w w e′∩ ≥ − , then there is (,) wed w w e′ ≤ ".
As max min max min| | | | | |Ow w w w≥ ≥ ∩ and max min max| | | |O ww w w e∩ ≥ − , we have:

max min max| | | | | | ww w w e≥ ≥ − . As max min max| | | |O ww w w e∩ ≥ − , there are at least max| | ww e−
characters are the same in minw and maxw . Namely, there are at most we characters are
different in minw and maxw . Thus, to transform minw into maxw , the total of operations is no
greater than we . Thus, we can know that the edit distance between minw and maxw is less than
or equal to we . Then, we have the conclusion (,) wed w w e′ ≤ .

Theorem 2 is the sufficient and necessary condition of (,) wed w w e′ ≤ . Thus, by using
Theorem 2, our method could correctly perform fuzzy keyword search. According to
Theorem 1, if w and 'w satisfy (,) wed w w e′ ≤ , then there are max| | | |w w= , | | 1w + ,

… , | | ww e+ . Thus, thresholds in the error-tolerance policy w
etp are (| | ,| |)wT w e w− ,

(| | 1,| |)wT w e w− + , … , (| |,| |)T w w . For simplicity, these threshold gates could be written
as (| | 1,| |)wT w e t w− + − , where 1, 2, , 1wt e= … + . When | | | |w w′≥ , it is obvious that the
threshold gate in which 1t = could be used to test whether (,) wed w w e′ ≤ . When | | | |w w′ > ,
it requires at least | | | |w w′ − deletions to transform w′ into w . Then, at most

(| | | |)we w w′− − operations are left which could be used to transform w′ into w . Thus,
there are at least | | [(| | | |)]ww e w w′− − − characters should be the same in w and w′ . If one
uses (| | 1,| |)wT w e t w− + − to test whether (,) wed w w e′ ≤ , then there is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5681

| | [(| | | |)] | | 1w ww e w w w e t′− − − = − + − . Thus, we can compute | | | | 1t w w′= − + . Namely,
if | | | |w w′ > , the threshold gate in which | | | | 1t w w′= − + could be used to test whether

(,) wed w w e′ ≤ (see Section 4.2).
As each character of w corresponds to a ciphertext component in DIdx (see Section 4.2)

and each character of w′ corresponds to a secret key component in the trapdoor (see Section
4.3). A secret key component can be used to decrypt a ciphertext component, if and only if
they have the correct corresponding relationship. Thus, we have the following definition.
Definition 6. Corresponding relationship. In an index DIdx , i

wc
C is a ciphertext component,

which corresponds to the i th character i
wc in w . In a trapdoor 'wTd , j

wc
D

′
 is a secret key

component, which corresponds to the j th character j
wc ′ in w′ . A corresponding relationship

is the tuple ,i j
w wc c

C D
′

< > . ,i j
w wc c

C D
′

< > is correct if i j
w wc c ′= . Otherwise, it is wrong.

As keywords in indexes and searched words in trapdoors have been hidden to protect the
privacy, it is difficult to find out the correct corresponding relationships. According to the
decryption algorithm Decrypt [21], if there are not enough correct corresponding
relationships, the cloud server cannot decrypt the indexes to obtain the identities of documents.
According to Theorem 2, the “enough” means that max| | | |O ww w w e′∩ ≥ − .

We give the following four properties, which could help the cloud to efficiently find out the
corresponding relationships which may be correct. In the following properties, i

wm is the i th

value in the word pattern of w , and j
wm ′ is the j th value in the word pattern of w′ .

pA B→ denotes, if there is A , then there is B with the probability p . Note that: (1) For
each i

wc and i
wm , mod | |i i w= if | |i w> ; (2) For each j

wc ′ and j
wm ′ , mod | |j j w′= if

| |j w′> . Thus, the meaning of "contiguous" in the following properties is more general. For
example, | | 1w

w wc c in w , and | | 1w
w wc c′′ ′ in w′ are all contiguous characters.

For clarity, we use the notations i
wc , j

wc ′ to illustrate the idea of properties and optimization
approach. In fact, the properties and optimization approach are used to handle the components

i
wc

C , j
wc

D
′
. i

wc and i
wc

C have the same order i . j
wc ′ and j

wc
D

′
 have the same order j . Thus,

if there is ,i j
w wc c ′< > , then there is the corresponding relationship ,i j

w wc c
C D

′
< > .

The following properties show the relationships between two words and their word patterns.
As these properties are easy to be proofed, we do not give the proof of them.
Property 1. 1 1 1 1andi j i j i j

w w w
p

w w wm m c c c c+ + + +
′ ′ ′= = =→

Property 2. 1 2 1 1(...) m dd no ai i i k j i j i k j
w w w w w w w

p
wm m m sp m c c c c+ + + + + +

′ ′ ′+ = = = →+ +

Property 3. 1 1 2 1(...) mo andd pi j j j k i j i j k
w w w w w w w wm m m m sp c c c c+ + + + + +

′ ′ ′ ′ ′= + + + → = =

Property 4. 1 2 1 2(...) mod (...) modi i i k j j j t
w w w w w wm m m sp m m m sp+ + + + + +

′ ′ ′+ + + = + + +

andp i j i k j t
w w w wc c c c+ +

′ ′→ = =

5682 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

According to the above properties, many corresponding relationships could be found.
However, in these corresponding relationships, there are many wrong corresponding
relationships. This is because that a corresponding relationship is correct only with the
probability 21/ (| | /)charp S sp= (see Section 3). As wrong corresponding relationships will
reduce the efficiency of the query, we give an optimization approach to eliminate the wrong
corresponding relationships as many as possible. The optimization approach is given below.

Step 1, given the word patterns of w and w′ , the cloud could compute quite a few
corresponding relationships according to Property 1, 2, 3 and 4. Note that, if the maximal
error-tolerance value of w is we , the k in the above properties should satisfy 1wk e≤ + .
This is because, if the first and the last character in a 1k + contiguous-character string have
been matched, it means that there are 1k − typos. Thus we have 1 wk e− ≤ (namely,

1wk e≤ +). For the same reason, the t in the Property 4 should satisfy 1wt e≤ + . Finally,

the cloud can obtain a set, denoted by 1 {(, , ,),...}i j p q
Step w w w wSet c c c c′ ′= < > < > .

Step 2, if the i th character in w′ corresponds to the j th character in w , it is obvious that
i and j should satisfy | | wi j e− ≤ . Thus, the cloud should delete (, , ,)i j p q

w w w wc c c c′ ′< > < >
in 1StepSet if | | wi j e− ≤/ or | | wp q e− ≤/ . For clarity, let 2StepSet denote the set, in which

some wrong corresponding relationships in 1StepSet have been deleted.

Step 3, if (, , ,)i j p q
w w w wc c c c′ ′< > < > is correct, both ,i j

w wc c ′< > and ,p q
w wc c ′< > should

appear in 2StepSet at least 2 times. Otherwise, (, , ,)i j p q
w w w wc c c c′ ′< > < > is wrong and should

be deleted. Let 3StepSet denote the set of corresponding relationships after executing Step 3.

Step 4, for each 3(, , ,)i j p q
w w w w Stepc c c c Set′ ′< > < > ∈ , the cloud extracts ,i j

w wc c ′< > and

,p q
w wc c ′< > . Then, the cloud adds ,i j

w wc c ′< > and ,p q
w wc c ′< > into a set, denoted by

4 { , }i j
Step w wSet c c ′= < > . If a tuple has been added into the set, the cloud does not add it again.

Step 5, the cloud extracts all the corresponding relationships from 4StepSet . If the total of

corresponding relationships is less than max| | ww e− , this means that w′ and w do not fuzzy
match. Otherwise, the cloud calculates all the combinations (each combination contains

max| | ww e− corresponding relationships). Let 5StepSet denote the set of these combinations.

Step 6, for each combination in 5StepSet , the cloud sorts its corresponding relationships. Let

(1 1,i j
w wc c ′< > , 2 2,i j

w wc c ′< > , 3 3,i j
w wc c ′< > , ..., ,n ni j

w wc c ′< >) denote a sorted combination, where

max| | wn w e= − and 1 2 ... ni i i< < < . Then, the cloud checks whether 1 2 ... nj j j< < < . If the
combination does not satisfy 1 2 ... nj j j< < < , the cloud deletes the combination in 5StepSet .

Recall the explanation of | |Ow w′∩ in Section 3, 1 2(, ,...,)ni i i and 1 2(, ,...,)nj j j represents
the orders of character-appearing orders of w and 'w . Thus, 1 2(, ,...,)ni i i and 1 2(, ,...,)nj j j

should be in strictly monotone increasing order. Let 6StepSet denote the set of combinations
after executing Step 6.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5683

Step 7, for each combination 3 31 1 2 2(, , , , , ,..., ,)n ni j i ji j i j
w w w w w w w wc c c c c c c c′ ′ ′ ′< > < > < > < > in

6StepSet , the cloud checks whether it is correct. According to the definition of word pattern
(Definition 4), a correct combination should satisfy,

31 1 2 1 1 2 2 2

3 1 1 1 12 2

1 2 1 2 1 2

1 2 1 21 2

(...) mod (...) mod , (...) mod

(...) mod ,..., (...) mod (...

) mod

n n n n n

n

ii i i j j j i i
w w w w w w w w w

j i i i j jj j
w w w w w w w w

j
w

m m m sp m m m sp m m m

sp m m m sp m m m sp m m

m sp

− − − −

+ + + + + +
′ ′ ′

+ + + ++ +
′ ′ ′ ′ ′

′

+ + + = + + + + + +

= + + + + + + = + +

+ 1

1

1 2 1 2| | 1 2 | |

1 2

, (... ...) mod (...

...) mod

n n n ni i j jiw w
w w w w w w w w w
j

w w w

m m m m m m sp m m m

m m m sp

′+ + + +
′ ′ ′

′ ′ ′

+ + + + + + + = + + + +

+ + +
Otherwise, the combination is wrong and should be deleted from 6StepSet . Let 7StepSet denote
the set of combinations after executing Step 7.

4.5 Fuzzy Keyword Search Algorithm supporting Access Control
Before describing the fuzzy keyword search algorithm supporting access control (FKSAAC),
we first illustrate the algorithm Decrypt . Then, we give the search algorithm FKSAAC.
Decryption Algorithm in FKSAAC. Most parts of the decryption algorithm in our method
are the same as the decryption algorithm in Bethencourt’s method [21]. However a few parts
are different. In Bethencourt’s method [21], in the trees (e.g.

DpT) which are associated with
ciphertexts, the attributes in leafs are stored in the form of plaintext. In our method, in the trees
(e.g. *

DpT) which are associated with indexes: (1) If the leafs are associated with characters of

keywords, the word pattern values (for example, (,)MF w i , 1, 2,...,| |i w=) are stored in
these leafs (the characters of keywords are not stored because the privacy of keywords should
be proctected). (2) If the leafs are associated with attributes, these attributes are stored in these
leafs in the form of plaintext (this part is the same as [21]). Thus, before representing the
algorithm FKSAAC, we want to briefly illustrate the decryption algorithm Decrypt which
has been slightly modified in our method.

Decrypt takes as input an index DIdx and a trapdoor wTd ′ of w′ . A document policy is
embedded in the index DIdx , and the document policy consists of several error-tolerance
policies and an access control policy. If and only if (1) w′ satisfies one of the error-tolerance
policies in DIdx and (2) the attributes of u satisfy the access control policy, Decrypt could
decrypt DIdx and output the identity of . Otherwise, it outputs a meaningless string ⊥ .

First, we introduce the recursive algorithm '(, ,)D wDecryptNode Idx Td x in Decrypt ,

where x is a leaf of *
DpT . Let ()i f x= (i is a character or an attribute associated with x).

We should note that: (1) If x is associated with an attribute, DecryptNode could efficiently
compute ()i f x= . This is because attributes in the leafs of *

DpT are stored in the form of
plaintext (this part is the same as [21]). (2) If x is associated with a character of a keyword,
DecryptNode can compute ()i f x= by using word patterns (see Section 3 and 4.4), where

()i f x= is a correct corresponding relationship (this part is the difference between our
method and [21]). Then, the algorithm DecryptNode computes as follows,

5684 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

(0)
(0)

(0)

(,) (() ,)(, ,) (,)
(,) (, ())

i x
x

i x

q
qi x

D q
i x

e D C e g H i hDecryptNode Idx Td x e g g
e D C e g H i

γγ

′ γ
γ

′

⋅
= = = . Otherwise,

(,)DDecryptNode Idx Td outputs ⊥ .
The rest parts of Decrypt in our method are the same as [21] and we briefly describe them

as follows. When x is a non-leaf node, the algorithm (, ,)D wDecryptNode Idx Td x′ proceeds
as follows. For all nodes z that are children of x , it calls DecryptNode and stores the
output as zF . Suppose x is associated with the threshold gate (,)x xT n m . If there exists xn

outputs, which are not ⊥ , (, ,)D wDecryptNode Idx Td x′ outputs (0)(,) xqe g g γ . When x R=

is the root of *
DpT , (, ,)D wDecryptNode Idx Td R′ outputs (0)(,) Rqe g g γ . Recall that, (0)Rq is

set to s (see Section 4.2). Thus, we have (0)(,) (,)Rq se g g e g gγ γ= . Then, the algorithm
Decryption decrypts DIdx by computing

 ()// ((,) / (,)) (|| 0) (,) / ((,) / (,)) || 0s l s s s l
D DC e C D e g g ID e g g e h g e g g IDγ α α+γ β γ= = .

Finally, the algorithm Decrypt outputs the identity DID of .
Search Algorithm FKSAAC. For each document, the cloud server runs the algorithm
FKSAAC to test whether the searched word fuzzy matches the keywords in a document.
FKSAAC takes as input the trapdoor wTd ′ of a searched word w′ and the index DIdx of an
encrypted document . FKSAAC outputs the identity DID of , if and only if (1) w′
satisfies (,)

ii wed w w e′ ≤ (represented by an error-tolerance policy of), where iw is one

of the keywords in , and (2) attributes in wTd ′ satisfy the access policy of . Otherwise,
FKSAAC outputs false. The search algorithm FKSAAC is described as follows.

Step 1. For each subtree i

et

w
pT (it represents the keyword iw) in *

DpT , FKSAAC computes

| |iw according to the number of ciphertext components and computes | |w′ according to the
number of secret key components in wTd ′ . If | | | |

ii ww e w′− ≤/ or | | | |
ii ww w e′ ≤ +/ (see

Theorem 1), FKSAAC aborts the keyword iw and then executes Step 1 to test the next
keyword in DIdx . Otherwise, FKSAAC computes | | | |iw w′ − : (1) If | | | | 0iw w′ − ≤ ,
FKSAAC extracts ciphertext components from DIdx s.t. these ciphertext components are
associated with the value 1t = ; (2) If | | | | 0iw w′ − > , FKSAAC extracts ciphertext
components from DIdx s.t. these ciphertext components are associated with the value

| | | | 1t w w′= − + (see Theorem 2).
Step 2. FKSAAC extracts the word pattern of iw from the index DIdx and the word

pattern of w′ from the trapdoor wTd ′ . Then, FKSAAC could calculate the set 7StepSet by
executing the optimization approach in Section 4.4. Next, FKSAAC finds out which secret
key component of an attribute in 'wTd corresponds to which ciphertext component of an
attribute in DIdx (these relationships about attributes are easy to be obtained, because they are
stored in plaintext). For each combination in 7StepSet , FKSAAC extracts the corresponding

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5685

relationships in it. Then FKSAAC runs the algorithm Decrypt in our method to try to decrypt

DIdx by using these corresponding relationships and the relationships about attributes: (1) If
Decrypt outputs the identity DID of , FKSAAC returns DID . (2) If Decrypt outputs ⊥ ,
FKSAAC tests the next combination in 7StepSet . If all the outputs of Decrypt are ⊥ ,

FKSAAC executes Step 1 to test the next keyword in DIdx .
Step 3. FKSAAC returns false.

The cloud server runs FKSAAC to test all the indexes of encrypted documents, and then
returns the encrypted documents whose identities have been retrieved to the user u .

5. Experiments
We compare our method FKS-AC with Fuzzy Keyword Search over Encrypted Data in Cloud
Computing (FKS) [1] and Privacy-Preserving Multi-Keyword Fuzzy Search over Encrypted
Data in the Cloud (PPMKFS) [17]. We also do the comparison works of FKS-AC when
choosing different values as sp (sp is the parameter in the word pattern function MF).

FKS-AC is implemented by using Java Pairing-Based Cryptography Library 2.0.0, which
could support the calculations in bilinear groups. In FKS-AC, the character set charS is
{ , ,..., , , ,..., , }a b z A B Z − , the attribute set attrS is 1 2 3{ , , }a a a and the access control policies
are " 1a AND 3a ", " 2a AND 3a ", " 1a OR 2a ", etc. In order to compare FKS-AC, PPMKFS
and FKS fairly (as PPMKFS and FKS do not support access control, the cloud has to test all
the indexes for fuzzy search), we suppose the data owner distributes the attributes 1a , 2a and

3a to users. Then, users have the privilege to search all the documents. Thus, FKS-AC also
has to test all the indexes of documents after receiving a trapdoor from a user.

Fig. 3. The time of building indexes

Our experiments run on a win7 computer with four 2.80GHz CPUs and 4G RAM. We

randomly extract 400 distinct keywords from the documents in ACM Digital Library. In these
keywords, the minimal, maximal and average number of characters are 3, 14 and 8
respectively. The documents is 1000 in total. Each document has 5 keywords, which are
randomly chosen from these 400 keywords. Then, we compare the running times of index
generation, trapdoor generation and fuzzy keyword search. Given a keyword w , its maximal

5686 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

error-tolerance value is we . In FKS-AC and FKS, we set (1) 1we = , if | | 5w ≤ ; (2) 2we = , if
5 | | 10w< ≤ ; (3) 3we = , if | | 10w > . To generate a searched word w′ , we randomly chooses

we characters as typos, and insert them into w . Thus, the number of characters in w′ is
| | ww e+ (| | 4,5,...,17w′ =). In PPMKFS, we set 1we = whether w is a long keyword or not.
This is because the number of typos allowed by PPMKFS is fixed when LSH has been chosen.

The time of index generation. Fig. 3 (a) shows the times of index generation in FKS-AC,
FKS and PPMKFS: (i) The index generation times are linear to the number of documents; (ii)
FKS and PPMKFS are more efficient than FKS-AC. Fig. 3 (b) shows that the times of index
generation of FKS-AC when setting the parameter sp to different values.

Analysis of the results. As FKS-AC, FKS and PPMKFS generate index per document, thus
the times of index generation are linear to the number of documents. The index generation of
FKS is constructed on AES. As AES is a symmetric encryption method and the computing
overhead is very low, FKS is very efficient. PPMKFS is constructed on LSH and BF (LSH and
BF consist of hash functions). ad of LSH and BF is much less than AES, the index
generation of PPMKFS is more efficient than FKS. In order to support access control,
FKS-AC is constructed on CP-ABE. CP-ABE is an asymmetric encryption scheme and
requires complicated calculations. Thus, FKS-AC spends more time building indexes.
Additionally, FKS-AC should calculate the word patterns for keywords. As the computing
overhead of word patterns does not increase when choosing different values as sp , the times
of index generation of FKS-AC are the same when sp is set to 43, 47 and 53 respectively.

As the data owner generates indexes before outsourcing documents to the cloud, index
generation could be seen as the initialization work before providing the search service. Thus,
we think the low efficiency of index generation in FKS-AC could be tolerated.

Fig. 4. The time of generating a trapdoor

The time of trapdoor generation. As shown in Fig. 4 (a), FKS-AC is the most efficient,

and FKS costs more time for trapdoor generation. From Fig. 4 (b), we can see that the times of
FKS-AC are almost the same when sp is set to different values.

Analysis of the results. In FKS-AC, trapdoor is generated on user client. A user only puts
some secret key components together according to the character-appearing order of w′ , and
then computes the word pattern of w′ . Thus, the trapdoor generation in FKS-AC is very
efficient. In PPMKFS, trapdoor is generated by data owner. The data owner generates the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5687

trapdoor for a user by executing LSH and BF. As LSH and BF consist of dozens of hash
functions, the trapdoor generation of PPMKFS is slower than FKS-AC. In FKS, the trapdoor is
generated on user client. Before generating a trapdoor for a searched word, the user should
first generate a fuzzy keyword set. However, a long searched word necessitates to issue a large
set whose size is (| |)weO w ′′ (1we ′ = if 5w′ ≤ ; 2we ′ = if 5 10w′< ≤ ; 3we ′ = if 10w′ >).
Thus, when | |w′ increases, the size of the set increases rapidly. Then, the user encrypts each
word in the set, and their ciphertexts are as the trapdoor of the searched word. Thus, the
efficiency of trapdoor generation of FKS is the lowest. As shown in Fig. 4 (b), when setting
sp to different values, the trapdoor generation times of FKS-AC are almost the same. This is
because the computing overhead of word pattern does not increase when choosing different
values as sp .

The time of fuzzy search. Fig. 5 shows the average time of search when | | 4,5,...,17w′ = .
From Fig. 5 (a), we can see that PPMKFS is the most efficient. FKS has a better performance
than FKS-AC when | | 10w′ < . FKS-AC is more efficient than FKS when | | 10w′ > . From Fig.
5 (b), we can see that the search efficiency of FKS-AC could be improved by increasing sp .

Analysis of the results. As PPMKFS performs fuzzy search only by multiplying two
groups of vectors (one group of vectors is a trapdoor and the other is the index of a document),
PPMKFS is very efficient. However, the search result of PPMKFS is not accurate. This is
because PPMKFS is based on BL and LSH. Both BL and LSH introduce false positives (a
false positive is that, a document should not be in the search result, but it is). Additionally,
LSH introduces false negatives (a false negative is that, a document should be in the search
result, but it is not). As the shortcomings of BL and LSH, PPMKFS can not provide the
accurate search results. Compared with PPMKFS, FKS and FKS-AC are accurate methods
and do not introduce any false positives or false negatives. We explain the exerimental results
(as shown in Fig. 5) of FKS and FKS-AC in detail below.

In FKS, each trapdoor consists of all the ciphertexts of possible misspellings of 'w . Thus,
when | |w′ increases, the size of trapdoor increases rapidly. When performing a fuzzy search,
as the cloud has to compare each ciphertext in the trapdoor of 'w with the indexes of
documens, the computing overhead of fuzzy search increases rapidly and inevitably results in
a long search time.

Fig. 5. The average time of fuzzy search

5688 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

In FKS-AC, if the searched word 'w is long, there are more secret key components in the
trapdoor of 'w which should be tested. Thus, FKS-AC should do more calculations in bilinear
groups. Thus, as shown in Fig. 5 (a), the search time of FKS-AC increases when | |w′
increases. Now we explain the reason why the efficiency decreases a lot when using the
trapdoor of 'w (| | 12w′ = or 14) to perform fuzzy search. Recall that, FKS-AC should
compute a set of combinations and try to decrypt indexes using these combinations. In the
procedure of fuzzy search, wrong combinations would reduce the search efficiency of
FKS-AC. When the searched word w′ is very similar to a keyword w and the typos in w′
does not exceed we , according to Theorem 2, there must exist some combinations that could
be used to correctly decrypt the indexex of documents which contains w . However, when the
searched word w′ is very similar to a keyword w , but the typos in w′ exceeds we , according
to Theorem 2, all these combinations found by our algorithm FKSAAC are wrong
combinations, which would waste a lot of time to try to decrypt indexes. For example, when
using w consttructionn′ = to search 1w construction= (

1
3we =), as the typos in w′ does

not exceed
1

3we = , FKS-AC could find out some right combinations. Then FKS-AC could try
to decrypt the index by using these combinations, and the search efficiency would not decrease
obviously. However, when using w consttructionn′ = to search 2w contributions=
(

2
3we =), as w′ is very similar to 2w , our algorithm could also find some combinations.

However, as the number of typos in w′ exceeds
2

3we = , according to Theorem 2, all these
combinations found by our algorithm FKSAAC are wrong combinations. As the cloud does
not know which combinations are wrong, all these wrong combinations should be used to try
to decrypt the indexes of documents which contains 2w . Thus, the search efficiency decreases
obviously. Note that, in the above example, 1w and 2w look very similar, but the edit distance
between them is great than the maximal error-tolerance values allowed by them. In our
experiments, the tested keyword are randomly chosen from ACM Digital Library. When
| | 12w′ = or 14 , there are many such keywords like 1w and 2w . For example, "adaptation"
and "adsorption", "Automation" and "Automobiles", etc. Thus, the search time of FKS-AC
increases a lot when | | 12w′ = and 14 .

From Fig. 5 (b), we can see that, the search efficiency increases with the value of sp . This
is because larger sp could help the cloud to find corresponding relationships more accurate
and efficient. Namely, a larger sp could reduce the number of wrong combinations found by
our algorithm FKSAAC. Thus, the search efficiency increases when sp increases.

6. Security Analysis

6.1 Security Analysis of FKS-AC about Collusion Attack.
In our method, we adopt CP-ABE scheme [21] to generate secret keys for different users.
Users use their secret keys to generate trapdoors for searching keywords. As the CP-ABE
scheme is collusion-resistance (it has been proofed in [21]). Thus, users’ secret key
components generated by CP-ABE scheme cannot be colluded to decrypt the ciphertexts
which beyond the privileges of users. Additionally, in our method, a user could generate new

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5689

secret keys by running the algorithm Delegate , and then use the new secret keys to construct
trapdoors. As new secret keys and old secret keys can not be colluded (it has been proofed in
[21]), the secret key components in the trapdoors from the same user cannot be colluded.

6.2 Security Analysis of FKS-AC in the Known Ciphertext Model.
Known Ciphertext Model [17, 23, 24]: The cloud server can only access (1) the encrypted
documents, (2) the indexes, (3) the word patterns of keywords and searched words, (4) the
submitted trapdoors, and (5) the search results.

According to the known ciphertext model, if the adversary records the word patterns,
trapdoors and search results, the adversary can build up access patterns. Therefore, under the
known ciphertext model, nothing beyond the access patterns and the search results should be
leaked. In the following paragraphs, iw denotes a keyword and 'iw denotes a searched word.
We use the notation ,i wiw eS to denote the collection of 'iw satisfying '(,)

ii i wed w w e≤ , where

(,)'i ied w w denotes the edit distance between iw and 'iw , and
iwe denotes the the maximal

error-tolerance value of iw . We adapt the definitions in [4, 17, 25] for our proofs.
Definition 7. Search Pattern (π): Let 1{ ,...,' '}nQ w w= be the set of searched words for n
consecutive queries, then π be a binary matrix s.t. [,] 1i jπ = if ,'

i wii w ew S∈ and

,'
i wij w ew S∈ , otherwise [,] 0i jπ = .

Definition 8. Access Pattern (pA): Let '()iD w (,'
i wii w ew S∈) be a collection that contains the

identities of documents which contain the keyword iw . Let 1{ ,..., }nT T T= be the trapdoors
for the query set 1{ ,...,' '}nQ w w= . Then, Access Pattern for the n trapdoors is defined as

1 1{ () (),..., () ()}' 'p p n nA T D w A T D w= = .

Definition 9. History (nH): Let D be the document collection and 1{ ,...,' '}nQ w w= be the
searched words for n consecutive queries. Then, (,)nH D Q= is defined as a n -query
History.
Definition 10. Trace (γ): Let 1{ ,..., }lC C C= be the collection of encrypted documents,

()iid C be the identity of iC , | |iC be the size of iC ,
iwP be the word pattern of iw , 'iwP be

the word pattern of 'iw , ()p nS H be the Search Pattern of nH and ()p nA H be the Access

Pattern of nH . Then, ()nHγ = 1{((),..., ())lid C id C , 1(| |,...,| |),lC C
1

(,...,),
nw wP P

1 '(,...,wP ')nwP , ()p nS H , ()}p nA H is defined as the trace of nH . Trace is the maximum
amount of information that a data owner allows to leak to an adversary.
Definition 11. View (V): Let 1{ ,..., }lC C C= be the collection of encrypted documents,

()iid C be the identity of iC , I be the collection of indexes of C ,
1

(,...,)
nw w wP P P= be the

collection of word patterns of keywords,
1 ' '(,...,)

nw w wP P P′ = be the collection of word

patterns of searched words, and 1{ ,..., }nT T T= be the collection of trapdoors. Then,

1() {((),..., ()), , , , , }n l w wV H id C id C C I P P T′= is defined as the view of nH . View is the
information that is accessible to an adversary.

5690 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

We adopt a similar simulation based proof, which is widely used in [4, 17]. Intuitively,
given two histories with the same trace, if the adversary cannot distinguish which of them is
generated by the simulator, the adversary cannot learn additional information about the index,
trapdoors and the encrypted documents beyond the search result and the access pattern [17].
Theorem 3. FKS-AC is secure under the known ciphertext model.
Proof. The notation S denotes the simulator, which can simulate a view *V . *V is
indistinguishable from an adversary’s view 1() {((),..., ()), , , , , }n l w wV H id C id C C I P P T′= .
To achieve this, the simulator S does the followings:
(1) Identities of documents are available in the trace. Thus, S can copy these identities, that

is, * *
1 1{ () (),..., () ()}l lid C id C id C id C= = . As identity lists of the adversary’s view V

and the simulated view *V are the same, they are computationally indistinguishable.
(2) S chooses l random values * *

1{ ,..., }lC C , s.t. * *
1 1| | | |,...,| | | |l lC C C C= = . The

documents are encrypted by using a secure encryption scheme (e.g. AES). Thus, the
outputs of the secure encryption scheme is computationally indistinguishable from
random values. Hence, *

iC and iC are computationally indistinguishable.
(3) S runs the algorithm Setup to obtain a public key PK and a master key MK , and then,

S runs the algorithm KeyGen to obtain a secret key SK .
(4) S constructs n consecutive queries * * *

1{ ' ,..., ' }nQ w w= , the word patterns

* * *
1' ' '

(,...,)
nw w w

P P P= , and the trapdoors * * *
1{ ,..., }nT T T= . For each 'iw Q∈ , 1 i n≤ ≤ ,

S generates the searched word *'iw randomly, s.t. *| |' | |'i iw w= . Then, S computes the

word pattern of *'iw . As *'iw is generated randomly, the word pattern of *'iw is
computationally indistinguishable from random values. Note that, the searched word 'iw
may have typos, and additionally, 'iw has been inserted several random characters at

random positions (see the trapdoor in Section 4.3). Thus, the word patterns of *'iw and

'iw are computationally indistinguishable. According to the characters in *'iw , S

generates the trapdoor *
iT for *'iw by utilizing the secret key components in SK . As the

secret key SK is indistinguishable from random values [21], the trapdoor *
iT generated

by utilizing SK is indistinguishable from random values. For the same reason, the
trapdoor iT for 'iw is also indistinguishable from random values. Hence, the trapdoors

*
iT and iT are computationally indistinguishable.

(5) For each *
iC , S sets an empty set *

iC
Set , where 1 i l≤ ≤ . According to the access

pattern pA , if ()iid C could be retrieved by using the word 'jw , then S adds *'jw to

*
iC

Set , where 1 j n≤ ≤ . The set *
iC

Set is as the keyword set of the encrypted document
*

iC . Next, S constructs the document policy for *
iC by using the keywords in *

iC
Set ,

and runs the algorithm Encrypt to generate the index *
iC

I for *
iC . The ciphertext

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5691

generated by Encrypt is as the index *
iC

I of *
iC . As the ciphertext is indistinguishable

from random values [21], the index *
iC

I is indistinguishable from random values. For the

same reason, the index
iCI generated by Encrypt is also indistinguishable from random

values. So
iCI and *

iC
I are computationally indistinguishable. Then, the index collection

I for { |1 }iC i l≤ ≤ and *I for *{ |1 }iC i l≤ ≤ are computationally indistinguishable.

Since each item of V and *V are computationally indistinguishable, we have the onclusion
that FKS-AC satisfies the security definition presented in Theorem 3.

7. Related Work
Li et al. [1] first propose a searchable encryption method supporting fuzzy keyword search.
For each keyword, data owner use the wildcard technique to build a fuzzy keyword set which
contains all the possible misspellings. The index and trapdoor are built on the set. To perform
a search, the cloud checks whether there is intersection between the index and the trapdoor. To
limit the size of the set, Liu et al. [14] propose a method which is based on a predefined
dictionary. The dictionary is as a filter to delete the meaningless words in a user’s search.
However, this method requires that a user should know much about the filed he/she queries.
Kuzu et al. [4] propose a generic similarity search method based on Bloom Filter (BF) and
Locality-Sensitive Hashing (LSH) [19, 26]. A LSH function hashes close items to the same
hash value with higher probability than the items that are far apart. Thus the similarity of the
keywords could be measured by using LSH functions. According the hash values of keywords,
the data owner builds indexes using BF. Thus, the indexes could support fuzzy keyword search.
In [17], Wang et al. propose a multi-keyword fuzzy search method. This method is also based
on BF and LSH. However, as LSH can not hash close items to the same hash value with the
probability 1, LSH inevitably results the in inaccurate search results.

References
[1] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword search over encrypted data

in cloud computing,” in Proc. of INFOCOM 2010 IEEE, pp. 1–5. IEEE, 2010.
Article (CrossRef Link)

[2] L. Zhou, D. Wu, B. Zheng, and M. Guizani, “Joint physical-application layer security for wireless
multimedia delivery,” Communications Magazine IEEE, 52(3):66–72, 2014.
Article (CrossRef Link)

[3] L. Zhou, H. C. Chao, and A. V. Vasilakos, “Joint forensics-scheduling strategy for delay-sensitive
multimedia applications over heterogeneous networks,” IEEE Journal on Selected Areas in
Communications, 29(7):1358–1367, 2011. Article (CrossRef Link)

[4] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity search over encrypted data,” in
Proc. of 2012 IEEE 28th International Conference on Data Engineering, pp. 1156–1167, IEEE,
2012. Article (CrossRef Link)

[5] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized search over encrypted
outsourced data with efficiency improvement,” IEEE Transactions on Parallel and Distributed
Systems, 27(9):2546–2559, 2016. Article (CrossRef Link)

[6] Z. Fu, F. Huang, X. Sun, A. Vasilakos, and C. N. Yang, “Enabling semantic search based on
conceptual graphs over encrypted outsourced data,” IEEE Transactions on Services Computing,
PP(99):1–1, 2016. Article (CrossRef Link)

https://doi.org/10.1109/infcom.2010.5462196
https://doi.org/10.1109/JSAC.2011.110803
https://doi.org/10.1109/TPDS.2015.2506573
http://ieeexplore.ieee.org/abstract/document/7723847/

5692 Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

[7] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data,” IEEE Transactions on Parallel and Distributed Systems,
27(2):340–352, 2016. Article (CrossRef Link)

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword ranked search
over encrypted cloud data,” IEEE Transactions on Parallel & Distributed Systems, 25(1):829–837,
2011. Article (CrossRef Link)

[9] H. H. Yong and P. J. Lee, “Public key encryption with conjunctive keyword search and its extension
to a multi-user system,” in Proc. of International Conference on Pairing-Based Cryptography, pp.
2–22, 2007. Article (CrossRef Link)

[10] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,” in Proc. of
Theory of Cryptography Conference, pp. 535–554. Springer, 2007. Article (CrossRef Link)

[11] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted data,” in
Proc. of International Conference on Applied Cryptography and Network Security, pp. 31–45,
Springer, 2004. Article (CrossRef Link)

[12] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption systems,” in Proc. of Theory of
Cryptography Conference, pp. 457–473, Springer, 2009. Article (CrossRef Link)

[13] N. Attrapadung and B. Libert, “Functional encryption for inner product: Achieving constant-size
ciphertexts with adaptive security or support for negation,” in Proc. of International Workshop on
Public Key Cryptography, pp. 384–402, Springer, 2010. Article (CrossRef Link)

[14] C. Liu, L. Zhu, L. Li, and Y. Tan, “Fuzzy keyword search on encrypted cloud storage data with
small index,” in Proc. of 2011 IEEE International Conference on Cloud Computing and Intelligence
Systems, pp. 269–273, IEEE, 2011. Article (CrossRef Link)

[15] M. Chuah and W. Hu, “Privacy-aware bedtree based solution for fuzzy multi-keyword search over
encrypted data,” in Proc. of 2011 31st International Conference on Distributed Computing Systems
Workshops, pp. 273–281, IEEE, 2011. Article (CrossRef Link)

[16] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen, “Efficient verifiable fuzzy keyword
search over encrypted data in cloud computing,” Computer Science & Information Systems,
10(2):667–684, 2013. Article (CrossRef Link)

[17] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud,” in Proc. of IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pp. 2112–2120, IEEE, 2014. Article (CrossRef Link)

[18] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-keyword fuzzy search over
encrypted outsourced data with accuracy improvement,” IEEE Transactions on Information
Forensics and Security, 11(12):2706–2716, 2016. Article (CrossRef Link)

[19] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity search in high dimensions via hashing,” VLDB,
volume 99, pp. 518–529, 1999. Article (CrossRef Link)

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the
ACM, 13(7):422–426, 1970. Article (CrossRef Link)

[21] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in Proc. of
2007 IEEE symposium on security and privacy (SP'07), pp. 321–334, IEEE, 2007.
Article (CrossRef Link)

[22] E. Shi, J. Bethencourt, T. H. Chan, D. Song, and A. Perrig, “Multi-dimensional range query over
encrypted data,” in Proc. of 2007 IEEE Symposium on Security and Privacy (SP'07), pp. 350–364,
IEEE, 2007. Article (CrossRef Link)

[23] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword search over encrypted cloud
data,” in Proc. of Distributed Computing Systems (ICDCS), 2010 IEEE 30th International
Conference on, pp. 253–262, IEEE, 2010. Article (CrossRef Link)

[24] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn computation on encrypted
databases,” in Proc. of the 2009 ACM SIGMOD International Conference on Management of data,
pp. 139–152, ACM, 2009. Article (CrossRef Link)

[25] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: improved
definitions and efficient constructions,” Journal of Computer Security, 19(5):895–934, 2011.
Article (CrossRef Link)

https://doi.org/10.1109/TPDS.2015.2401003
https://doi.org/10.1109/infcom.2011.5935306
https://link.springer.com/chapter/10.1007/978-3-540-73489-5_2
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1109/CCIS.2011.6045073
https://doi.org/10.1109/icdcsw.2011.11
https://doi.org/10.2298/CSIS121104028W
https://doi.org/10.1109/infocom.2014.6848153
https://doi.org/10.1109/TIFS.2016.2596138
http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Gionis.pdf
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/sp.2007.11
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/icdcs.2010.34
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.3233/JCS-2011-0426

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5693

[26] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality,” in Proc. of the thirtieth annual ACM symposium on Theory of computing, pp.
604–613, ACM, 1998. Article (CrossRef Link)

Zhuolin Mei received his Ph.D. degree from Huazhong University of Science and Techn
ology in 2017. He is currently a lecturer with the School of Information Science and
Technology, Huizhou University. His research interests include cloud computing, data
security, data search and access control.

BinWu received his Ph.D. degree from Huazhong University of Science and
Technology in 2017. His research interests include database security and cloud security.

Shengli Tian received his Ph.D. Degree from Huazhong University of Science and
Technology in 2014. He is currently a lecturer with the School of Information Engineering,
Xuchang University. He research interests include information security technology and
machine learning, etc.

Yonghui Ruan received his Ph.D. degree from Huazhong University of Science and
Technology in 2015. He is currently a lecturer with the Department of Information Science
and Technology, Wenhua College. His research interests include cloud computing, and big
data technology.

Zongmin Cui received his Ph.D. Degree from Huazhong University of Science and
Technology in 2014. He is currently an associate professor with the School of Information
Science and Technology, Jiujiang University. His research interests include cloud
computing, data security, publish/subscribe system and data query.

https://doi.org/10.1145/276698.276876

