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Abstract 
 

With the rapid development of cloud computing, more and more data owners are motivated 
to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive 
data should be encrypted before being outsourced to the cloud. However, this results that 
effective data utilization becomes a very challenging task, such as keyword search over 
ciphertexts. Although many searchable encryption methods have been proposed, they only 
support exact keyword search. Thus, misspelled keywords in the query will result in wrong or 
no matching. Very recently, a few methods extends the search capability to fuzzy keyword 
search. Some of them may result in inaccurate search results. The other methods need very 
large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy 
keyword search methods do not support access control. In our paper, we propose a searchable 
encryption method which achieves fuzzy search and access control through algorithm design 
and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is 
small and the search results are accurate. We present word pattern which can be used to 
balance the search efficiency and privacy. Finally, we conduct extensive experiments and 
analyze the security of the proposed method. 
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1. Introduction 

In recent years, with the rapid development of cloud computing, more and more sensitive 
information are being centralized into the cloud, such as emails, government documents, etc. 
By outsourcing data to the cloud, data owners can enjoy various advantages by utilizing high 
quality of cloud services, such as data storage, maintenance and applications [1, 2, 3]. 
However, the cloud is not fully trusted by the data owners. Thus, the privacy of sensitive data 
in the cloud naturally becomes a primary concern of data owners. To mitigate the concern, 
sensitive data is usually encrypted before outsourcing to prevent from unauthorized access [4, 
5]. Since the data is encrypted, the searching of documents which contains specific keywords 
becomes rather difficult. 

To solve the problem above, many searchable encryption methods [6, 7, 8, 9, 10, 11, 12, 13] 
have been proposed. However, they only support exact keyword matching. Misspelled 
keywords in the query will result in wrong or no matching. Very recently, a few works [1, 4, 
14, 15, 16, 17, 18] extend the exact keyword matching to approximate keyword matching, also 
known as fuzzy keyword search. According to the techniques adopted in fuzzy keyword 
search methods, they could be classified into two classes: (1) Wildcard based fuzzy keyword 
search methods [1, 14, 16]; (2) Locality-Sensitive Hashing (LSH) [19] and Bloom Filter (BF) 
[20] based fuzzy keyword search methods [4, 15, 17]. In wildcard based fuzzy keyword search 
methods, data owner has to build an expanded index that covers all the possible misspelling 
keywords, which leads to a very large index and inefficient keyword search. In LSH and BF 
based fuzzy keyword search methods, the search is very efficient. However, these methods 
may miss out some correct search results. This is because that the adopted technique, LSH, 
only maps the similar items to the same hash value with a possibility. Additionally, the above 
fuzzy keyword search methods do not support access control, which is an important 
requirement of data sharing in cloud computing. 

In this paper, we propose a method which not only supports fuzzy keyword search but also 
access control. For each document, the data owner defines a document policy, which consists 
of several error-tolerance policies and one access control policy. An error-tolerance policy 
represents the maximal number of misspellings a user can make when searching a keyword. 
The access control policy represents the users who have the privilege to search the document. 
Next, according to the document policy, the data owner generates an index for the document 
by using the Ciphertext-Policy Attribute-based Encryption (CP-ABE) method. Then, the data 
owner assigns secret keys and attributes to users according to their identifiers. A user can 
retrieve a document, if and only if (1) the user’s attributes satisfy the access control policy in 
the document policy, and (2) the searched word in the user’s query satisfies one 
error-tolerance policy in the document policy. We present word pattern which could be used to 
balance the search efficiency and privacy. Finally, we give a fuzzy keyword search algorithm. 
Compared with wildcard based fuzzy keyword search methods [1, 14, 16], our method has 
smaller index size and is more efficient. Compared with LSH and BF based fuzzy keyword 
search methods [4, 15, 17], our method can accurately obtain all the search results. Through 
extensive experiments and rigorous security analysis, we show that our method is efficient and 
secure. The contributions of this paper are listed as follows: 
(1) We propose a method which supports both the fuzzy keyword search and access control. 
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(2) We present word pattern and construct a fuzzy keyword search algorithm. By utilizing 
word pattern, the search efficiency and privacy can be balanced. 
(3) We implement our method. The experimental results show that our method is efficient. We 
analyze the security of our method, and our proposed method is secure under the known 
ciphertext model.  

The reminder of this paper is organized as follows: Section 2 is the preliminaries. Section 3 
is word pattern. Section 4 is the construction of our fuzzy keyword search method. Section 5 
shows the experiment results. Section 6 represents the security analysis and proofs. Section 7 
is the related work. 

2. Preliminaries 
Definition 1. A ciphertext-policy attribute based encryption (CP-ABE) [21] consists of five 
algorithms: Setup, Encrypt, KeyGen, Delegate and Decrypt. 

( ) ( , )Setup PK MKλ → . The setup algorithm takes the security parameter λ  as input, and 
outputs a public key PK  and a master key MK. 

( , , )Encrypt PK M P CT→ . The encryption algorithm takes the public key PK , a message 
M, and a policy P as input. The algorithm encrypts M and outputs a ciphertext CT. 

( , )KeyGen MK S SK→ . The key generation algorithm takes the master key MK and an 
attribute set S as input. It outputs a private key SK. 

 ( , )Delegate SK S SK→ . The delegate algorithm takes as input a secret key SK for the 

attributes in S and a set S S⊆ . It outputs a secret key SK  for the attributes in S . 
( , , )Decrypt PK CT SK M→ . The decryption algorithm takes as input the public key PK , 

a ciphertext CT (CT contains a policy P), and a private key SK (SK contains the attribute set S). 
If S satisfies P, then the algorithm decrypts CT and outputs M. 

There are some facts related to groups with efficiently computable bilinear maps which are 
used in CP-ABE [21]. Let 0G  and 1G  be two multiplicative cyclic groups of prime order p. 
Let g be a generator of 0G  and e be a bilinear map, 0 0 1:e G G G× → . The bilinear map e has 
the following properties: (1) Bilinearity: For all 0,u v G∈  and , pa b Z∈ , we have 

( , ) ( , )a b abe u v e u v= . (2)  Non-degeneracy: ( , ) 1e g g ≠ . 
Definition 2. Edit distance [1]. Edit distance is a well-studied method to quantitatively 

measure the word similarity. The edit distance ( , )ed w w′  between two words w and w′  is the 
number of operations required to transform one of them into the other. The operations are 
substitution, deletion and insertion. Substitution is the operation that changes one character to 
another in a word. Deletion is the operation that deletes one character from a word. Insertion is 
the operation that inserts one character into a word. 

3. Word Pattern 
In this paper, we propose word pattern, word pattern function, and character-appearing order. 
The word pattern could be used to balance the search efficiency and security. The word pattern 
function is used to compute the word pattern. The character-appearing order provides the 
correct way to perform fuzzy keyword search. 
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Definition 3. Word pattern function ( , )MF w i°  is defined as below 
| |
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, where MH  is a hash function, i
w

c °  is the i th character in w° ( w°  is a keyword w  or a 
searched word w′ ) and sp  is a positive integer defined by data owner. 
Definition 4. ( ( ,1), ( , 2),..., ( ,| |))M M Mw

M F w F w F w w°
° ° ° °=  is the word pattern of w° . 

( , )i
Mw

m F w i°
°=  is the word pattern value of the i th character in w° , where 1,...,| |i w°= .  

Let charS  denote the character set which is used to spell all the keywords, and | |charS  
denote the number of characters in charS . According to the Definition 3, a word pattern value 

corresponds to average 2 /| |charS sp  two-contiguous characters. Given a word pattern value, 
one can not know the word pattern value is obtained by calculating which two-contiguous 
characters. Data owner could use sp  to balance the privacy (keyword privacy and searched 
word privacy) and search efficiency: (1) Smaller sp  means there are more characters who 
have the same word pattern value. Thus, when decreasing sp , the security could be enhanced. 
However, different two-contiguous characters who have the same word pattern value would 
affect the efficiency of fuzzy keyword search (see Section 4.5). (2) Larger sp  means there are 
fewer characters who have the same word pattern value. Thus, when increasing sp , the search 
efficiency could be improved, but the security decreases. 
Definition 5. Given a word 1 2 | |... w

w w w
w c c c

°

° ° °
° = , for i j∀ <  ( , [1,| |]i j w°∈ ), the character 

appearing order of w° is that i
w

c ° is before j
w

c ° . 
As keywords and searched words are encrypted, it is difficult to measure the word similarity 

according to edit distance. Fortunately, we find a method to judge whether ( , ) wed w w e′ ≤  
according to | |Ow w′∩  (see Theorem 2 in Section 4.4), where | |Ow w′∩  is the maximal 
number of characters which are the same in w and 'w  in the character appearing order of w  
and 'w . For example, given a keyword w cat=  and a searched word 'w acat= ,  it is easy to 
compute | | 3Ow w′ =∩ . 

4. Construction of Fuzzy Keyword Search supporting Access Control  
In our scheme, the cloud is considered to be ”honest-but-curious” [1, 14, 15, 17]. Thus the 
cloud would honestly follow the designated protocols and procedures to fulfill the service 
provider’s role, while it may analyze the information stored and processed on the cloud in 
order to learn additional information about its customers. In our scheme, first data owner 
builds indexes for documents and encrypts documents using a secure encryption method, such 
as AES. Next, the data owner stores the encrypted documents and indexes on the cloud. Then, 
the data owner distributes secret keys to users according to their identifiers. A user uses his/her 
secret key to generate trapdoors for the searched words and sends the trapdoors to the cloud for 
fuzzy keyword search. Upon receiving the trapdoors, the cloud server performs fuzzy keyword 
search and replies with the encrypted documents which contain the searched words. 
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4.1 System Setup 

The data owner defines a finite character set charS  and a finite attribute set attrS . charS  

contains all the characters which are used to spell keywords and attrS  contains all the 
attributes. For example, { , ,..., , , ,..., , , , /,...}charS a b z A B Z= − + . For a school of computer 

science, {attrS = ,student ,professor ,computerScience ...} . Next, the data owner runs the 
algorithm Setup  [21]. Setup  takes the security parameter λ  as input. It outputs the public 
key PK  and master key MK . The public key PK  is 1/

0 , , , , ( , )G g h g f g e g gβ β α= =  and 

the master key MK  is , gαβ , where 0G  is a bilinear group of prime order p  with generator 
g , α  and β  are randomly chosen from pZ . Then, the data owner chooses a hash function 

MH  and a positive integer sp  to construct the word pattern function MF . Finally, the data 
owner publishes MF , but keeps MK and PK secretly. 

4.2 Building Index 

For each document  , the data owner defines a document policy Dp . Dp  consists of two 
kinds of policies: (i) Error-tolerance policy; (ii) Access control policy. For each keyword of 
 , the error-tolerance policy limits the maximal typos that a user could make when searching 
a keyword. For the document  , the access control policy represents who has the privilege to 
search the keywords of  . In the following sections, we first describe the error-tolerance 
policy and access control policy respectively. Then, we show how to construct Dp  by using 
error-tolerance policy and access control policy. Finally, we show how to generate the index 

DIdx  for the document   under Dp . 
Before describing the policies in our method, we want to explain the threshold gate in detail. 

In our method, error-tolerance policy, access control policy and document policy can be 
transform into tree structures. In these tree structures, each internal node is associated with a 
threshold gate and each leaf is associated with a character (or an attribute). If an internal node 
is associated with the threshold gate ( , )T n m , it means that (i) the internal node has m  
children, (ii) ( , )T n m  returns true if and only if there are at least n  children who return true, 
(iii) a leaf returns true if and only if the character (or attribute) associated with the leaf matches 
the character (or attribute) in the query of a user. For example, OR could be represented as 

(1, )T m , AND could be represented as ( , )T m m . 

 
 

Fig. 1. The tree structures of error-tolerance policy, access control policy and document policy 
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Error-tolerance Policy. For each keyword w  of the document  , the data owner defines the 
maximal error-tolerance value we  and an error-tolerance policy w

etp . w
etp  could be represented 

as a three-level tree, denoted by 
et

w
pT . As shown in Fig. 1 (a), the root in 

et

w
pT  is composed of a 

threshold gate (1, 1)wT e + . The root has 1we +  children, which are numbered from 1 to 
1we + . The t th child is composed of the threshold gate (| | 1,| |)wT w e t w− + − , where 

1, 2,..., 1wt e= + . For each subtree of 
et

w
pT , iL  is the i th leaf of the subtree and iL  is 

associated with the tuple , , ( , )i
w Mc i F w i< > , where i

wc  is the i th character in w , i  is the 

order of i
wc  in w , and ( , )MF w i  is the word pattern value of i

wc . 
These threshold gate (| | 1,| |)wT w e t w− + −  ( 1,..., 1wt e= + ) could be used to determine 

whether a searched word w′  satisfies ( , ) wed w w e′ ≤ . Specifically, our method uses the 
threshold gate (| | 1,| |)wT w e t w− + −  to perform fuzzy keyword search: If | | | |w w′≥ , our 
method chooses the threshold gate in which 1t = ; If | | | | 0w w′ − > , our method chooses the 
threshold gate in which | | | | 1t w w′= − +  (see Theorem 2 in Section 4.4). The order i  
provides the correct comparison order during the fuzzy keyword search (see the fuzzy 
keyword search algorithm in Section 4.5). 
Access Control Policy. For each document  , the data owner defines an access control 
policy D

acp . D
acp  could be represented as a tree, denoted by D

acp
T . Internal nodes in D

acp
T  are 

composed of threshold gates and the leaves are associated with attributes. Fig. 1 (b) shows the 
tree structure of the access control policy D

acp =professor OR (student AND computerScience). 

For this access control policy D
acp , it is true if and only if the user is a professor or a student of 

computer science. By setting similar access control policies, our method could realize the 
access control when performing fuzzy keyword search. 
Document Policy.  For each document  , after constructing the access control policy and 
error tolerance policies for all the keywords in  , the data owner constructs a document 
policy Dp . Suppose (1) 1 2

1 2{ , ,... | , ,... }
D

w w
et et wp p w w S∈  is the set of all the error-tolerance 

policies of keywords in  , where 
DwS  is the keyword set of  , (2) D

acp  is the access control 

policy of  . The formal description of Dp  is | |1( ... )SwD
ww D

D et et acp p p p= ∨ ∨ ∧ , where | |
DwS  

is the total of keywords in 
DwS . Because | |1 ,..., SwD

ww
et etp p  and D

acp  could be represented as trees 
| |1 ,..., SwD

et et

ww
p pT T  and D

acp
T , the policy Dp  could be represented as 

DpT  (as shown in Fig. 1 (c)) . 

Index Generation. For each document  , the data owner runs the algorithm 
( , || 0 , )

D

l
D pEncrypt PK ID T  [21] to generate the index, where PK  is the public key, DID  is 

the identity of   and 
DpT  is the document policy of  . Note that, the data owner appends l  

0s to the identity DID , denoted by || 0l
DID . In this way, the cloud could check whether a 

decryption is valid [22]. If a decryption outputs a plaintext that there are l  0s at the end of the 
plaintext, then the decryption is valid. Otherwise, it is invalid. 
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We briefly describe the encryption algorithm Encrypt  (details are in [21]). In [21], the 
children of an internal node in 

DpT  are numbered from 1 to num . The function ( )index x  
returns such a number associated with the node x . The function ( )parent x  returns the 
parent of the node x . Encrypt  first chooses a polynomial xq  for each node in the tree 

DpT . 

These polynomials are chosen in a top-down manner, starting from the root of 
DpT . For each 

node x  (suppose the threshold gate of x  is ( , )x xT n m ) in 
DpT , set the degree of xq  to 1xn − . 

For the root R  of 
DpT , Encrypt  chooses a random ps Z∈  and sets (0)Rq s= . For any 

other node x , Encrypt  sets ( )(0) ( ( ))x parent xq q index x=  and randomly chooses xd  other 

points to completely define xq . Then, Encrypt  [21] encrypts || 0l
DID  under Dp  as follows. 

(0) (0)( , ( || 0 ) ( , ) , , (': , ( )) )y y

D

q ql s s
p D y yCT T C ID e g g C h y Y C g C H f yα= = = ∀ ∈ = = ,  

where Y  is the set of leafs in 
DpT , ( )f y  is the function which returns the character or 

attribute associated with y , and H  is a hash function. Note that, the threshold gates now have 
been embedded in the ciphertexts by using this method. 

 

 
Fig. 2. The tree structure *

DpT of Dp  
 

In [21], the characters associated with the leafs of 
DpT  are required to be stored in plaintext. 

However, data owner should protect the privacy of keywords in indexes. Thus, we transform 
the tree 

DpT  into a new tree *
DpT  (see Fig. 2) to hide the characters of keywords. Then, the data 

owner could construct the index DIdx  according to the ciphertext CT  of || 0l
DID . 



*( , ( || 0 ) ( , ) , ,
D

l s s
D p DIdx T C ID e g g C hα= = =  

: ,
D ii w ww S e∀ ∈  

( )i

et

w
k Py Y T∀ ∈  and ky  is the leaf of the t th subtree of  i

et

w
PT : 

(0) (0), ' ( ( )) , , , , ( , ),y yk k

k k

q q
y y k M iC g C H f y i t k F w k= =  

( ) :D
acp

y Y T∀ ∈  
(0) (0), ' ( ( ) )y yq q

y yC g C H f y= =  
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, where 
iwe  is the maximal error-tolerance value of iw , ( )kchar y  is the character 

i

k
wc  

associated with the leaf node ky , ( )kf y  (or ( )f y ) returns the character (or attribute) 

associated with the leaf ky  (or y ), ( )i

et

w
pY T  is the set of leafs of i

et

w
pT  ( | |1,...,

wDSi w= ), ( )D
acp

Y T  

is the set of leafs of D
acp

T . For simplicity, in the following paragraphs, 
(0) (0)'( , ( ( )) )y yk k

k k

q q
y y kC g C H f y= =  is denoted by the notation k

wic
C  . k

wic
C  is the 

ciphertext component corresponding to the k th character 
i

k
wc  in the keyword iw . 

We observe that different documents may have the same keywords, and their indexes have 
the same word patterns. Thus, adversaries may infer the keywords by obersving the word 
patterns. Namely, if the word patterns of two keywords are the same, the adversaries may 
guess the two keywords are the same. To prevent such attacks, the data owner could 
randomize the keywords and word patterns. For each keyword | |1 ... i

i i

w
i w ww c c=  in the document 

 , first the data owner chooses an integer 1 iwa  ( 1 0
iwa ≥ ) randomly, and next chooses 1 iwa  

characters randomly, denoted by 
11,..., wiaη η . Then, the data owner chooses 1 iwa   positions in 

iw  randomly, and put 
11,..., wiaη η  at these positions. For simplicity, we use the notation R

iw  

to denote the randomized iw . Then, the data owner computes the word pattern and 

character-appearing order of R
iw . For each artificial character iη , the data owner chooses two 

random values ( ', )
i i

C Cη η  as the ciphertext component of iη , s.t. | | | |
i jyC Cη =  and 

| | | |' '
i jyC Cη = , where ( , ')

j jy yC C  is the ciphertext component of j
wc ′  and j

wc ′  is a character 

randomly chosen from the keyword iw . According to [21], 
jyC  and '

jyC  are 
computationally indistinguishable from random values. Thus, after randomization, attackers 
cannot distinguish which character is a real character or an artificial character according to the 
word pattern values and ciphertext components. So, the index DIdx  can prevent the statistical 
attacks.  

4.3 Trapdoor Generation 
For each user u , the data owner runs the algorithm KeyGen  [21] to generate the secret key. 
In our method, the algorithm KeyGen  takes as input the master key MK  and 

uchar attrS S∪  

( charS  is the character set which is used to spell all the keywords of documents, and 
uattrS  is 

the attribute set distributed to u  by the data owner). It outputs the secret key uSK  for u . 
KeyGen  first randomly chooses a number γ  from pZ , a number cγ  from pZ  for each 

character charc S∈ , and a number aγ  from pZ  for each attribute 
uattra S∈ . Then KeyGen  

computes the secret key as 
( )/( , : ( ) , , : ( ) , )' 'c c a a

uu char c c attr a aSK D g c S D g H c D g a S D g H a D gγ γ γ γα+γ β γ γ= = ∀ ∈ = ⋅ = ∀ ∈ = ⋅ =  

Then, the data owner distributes the secret key uSK  to the user u . For simplicity, in the 
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following paragraphs, we use the notation cD  to denote ( ( ) , )'c c
c cD g H c D gγ γγ= ⋅ = . cD  

is the secret key component corresponding to the character c . 
The trapdoor generation for a searched word 1 | |... w

w ww c c ′
′ ′′ =  is as follows. In the secret key 

uSK  of u , there are secret key components for all the characters. Thus, for each character in 
w′ , u  could find a corresponding secret key component. Then, u  could generate a trapdoor 

'wTd  for w′ . The trapdoor wTd ′  is the tuple ,char attrTd Td< > , where 

'
{ , , ( , ) | 1,...,| |}i

w
char c

Td D i F w i i w′ ′= < > =  (
'

i
wc

D  is the secret key component for the i th 

character i
wc ′  of w′ ), and {( , ) | }'

uattr a a attrTd D D a S= ∈ . 

For the character c , the secret key component cD  in different trapdoors are always the 
same. Thus, adversaries may infer the searched word by obersving the secret key components. 
To prevent such attacks, u  could run the delegate algorithm Delegate  [21] to generate new 
secret keys. Then, for each search, u  uses the new secret keys to generate a trapdoor. We also 
observe that if the searched words are the same, their word patterns in the trapdoors are the 
same. Thus, adversaries may also infer the searched word by obersving the word patterns. To 
prevent such attacks, users could choose 2 'wa  characters randomly, denoted by 

2 '1,..., waµ µ , 
and use the same randomization method in Section 4.2 to randomize their trapdoors. Finally, 
u  sends the trapdoor wTd ′  to the cloud to perform search. 

4.4 Theorem, Property and Optimization 
In this section, we give some theorems, properties and an optimization approach. These 

theorems and properties are the basis of our proposed method. Note that, the explanation of the 
notation | |Ow w′∩  in the following Theorem 2 can be found in Section 3. 
Theorem 1. w  is a keyword of a document and w′  is a searched word. we  ( 0we ≥ ) is the 
maximal error-tolerance value of w . If ( , ) wed w w e′ ≤ , then there is 
| | | | | |w ww e w w e′− ≤ ≤ + , where | |w  and | |w′  denote the number of characters in w  and w′  
respectively. 

As Theorem 1 is easy to be proofed, we do not give the proof of Theorem 1. Theorem 1 is 
the necessary condition of ( , ) wed w w e′ ≤ . Thus, some keywords in indexes, which do not 
meet users’ search requests, can be filtered out by using Theorem 1. 
Theorem 2. w  is a keyword of a document and w′  is a searched word. we  ( 0we ≥ ) is the 
maximal error-tolerance value of w . ( , ) wed w w e′ ≤  if and only if max| | | |O ww w w e′∩ ≥ −  
(If | | | |w w′≥ , max| | | |w w=  and min| | | ' |w w= ; Otherwise, max| | | |w w′=  and min| | | |w w= ). 
Proof. 
(1) The proof of "if ( , ) wed w w e′ ≤ , then there is max| | | |O ww w w e′∩ ≥ − ". 
Case 1: minw  could be transformed into maxw  only by using substitutions and insertions. 

Suppose max min| |Ow w n∩ = . As max min( , ) wed w w e≤ , we can suppose max min( , )ed w w =  

we k− , where k  ( 0 wk e≤ ≤ ) is an integer. According to Definition 2, after one operation 



5680                                        Zhuolin Mei et al.: Fuzzy Keyword Search Method over Ciphertexts supporting Access Control 

(substitution or insertion), the word minw  could be transformed into a new word min 1w + . 

min 1w +  satisfies max min 1 max min( , ) ( , ) 1ed w w ed w w+ = −  and max min 1| | 1Ow w n+∩ = + . Thus, it 
is easy to know that, after we k−  operations (substitutions and insertions), the word minw  
could be transformed into a new word min ( )we kw + − . min ( )we kw + −  satisfies max min ( )( , )

we ked w w + −  

max min( , ) ( ) 0wed w w e k= − − =  (note max min( , ) wed w w e k= − ) and max min ( )| |
we k Ow w + −∩   

( )wn e k= + − . According to Definition 2, as there is max min ( )( , ) 0
we ked w w + − = , we have the 

conclution max min ( )we kw w + −= . Thus, we have max min ( ) max| | | |
we k Ow w w+ −∩ = . Because there 

are max min ( ) max| | | |
we k Ow w w+ −∩ =  and max min ( )| | ( )

we k O ww w n e k+ −∩ = + − , we have the 

conclusion max| | ( )ww n e k+ −= . Then, as max min| |Ow w n∩ =  and 0 wk e≤ ≤ , there is 

max min max| | | |O ww w w e∩ ≥ − . Namely, we have max| | | |O ww w w e′∩ ≥ − . 
Case 2: Substitutions, insertions and deletions are required to transform minw  into maxw . 
To transform minw  into maxw , substitutions and insertions can change the value of 

max min| |Ow w∩ , but deletions can not change the value of max min| |Ow w∩ . Thus, if 
substitutions, insertions and deletions are required to transform minw  into maxw , the 
conclusion max min max| | | |O ww w w e∩ ≥ −  in Case 1 is still correct in Case 2. Namely, we have 

max| | | |O ww w w e′∩ ≥ − .  
(2) The proof of "if max| | | |O ww w w e′∩ ≥ − , then there is ( , ) wed w w e′ ≤ ". 
As max min max min| | | | | |Ow w w w≥ ≥ ∩  and max min max| | | |O ww w w e∩ ≥ − , we have: 

max min max| | | | | | ww w w e≥ ≥ − . As max min max| | | |O ww w w e∩ ≥ − , there are at least max| | ww e−  
characters are the same in minw  and maxw . Namely, there are at most we  characters are 
different in minw  and maxw . Thus, to transform minw  into maxw , the total of operations is no 
greater than we . Thus, we can know that the edit distance between minw  and maxw  is less than 
or equal to we . Then, we have the conclusion ( , ) wed w w e′ ≤ .       

Theorem 2 is the sufficient and necessary condition of ( , ) wed w w e′ ≤ . Thus, by using 
Theorem 2, our method could correctly perform fuzzy keyword search. According to 
Theorem 1, if w  and 'w  satisfy ( , ) wed w w e′ ≤ , then there are max| | | |w w= , | | 1w + , 

… , | | ww e+ . Thus, thresholds in the error-tolerance policy w
etp  are (| | ,| |)wT w e w− , 

(| | 1,| |)wT w e w− + , … , (| |,| |)T w w . For simplicity, these threshold gates could be written 
as (| | 1,| |)wT w e t w− + − , where 1, 2, , 1wt e= … + . When | | | |w w′≥ , it is obvious that the 
threshold gate in which 1t =  could be used to test whether ( , ) wed w w e′ ≤ . When | | | |w w′ > , 
it requires at least | | | |w w′ −  deletions to transform w′  into w . Then, at most 

(| | | |)we w w′− −  operations are left which could be used to transform w′  into w . Thus, 
there are at least | | [ (| | | |)]ww e w w′− − −  characters should be the same in w  and w′ . If one 
uses (| | 1,| |)wT w e t w− + −  to test whether ( , ) wed w w e′ ≤ , then there is 
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| | [ (| | | |)] | | 1w ww e w w w e t′− − − = − + − . Thus, we can compute | | | | 1t w w′= − + . Namely, 
if | | | |w w′ > , the threshold gate in which | | | | 1t w w′= − +  could be used to test whether 

( , ) wed w w e′ ≤  (see Section 4.2). 
As each character of w  corresponds to a ciphertext component in DIdx  (see Section 4.2) 

and each character of w′  corresponds to a secret key component in the trapdoor (see Section 
4.3). A secret key component can be used to decrypt a ciphertext component, if and only if 
they have the correct corresponding relationship. Thus, we have the following definition. 
Definition 6. Corresponding relationship. In an index DIdx , i

wc
C  is a ciphertext component, 

which corresponds to the i th character i
wc  in w . In a trapdoor 'wTd , j

wc
D

′
 is a secret key 

component, which corresponds to the j th character j
wc ′  in w′ . A corresponding relationship 

is the tuple  ,i j
w wc c

C D
′

< > .  ,i j
w wc c

C D
′

< >  is correct if i j
w wc c ′= . Otherwise, it is wrong. 

As keywords in indexes and searched words in trapdoors have been hidden to protect the 
privacy, it is difficult to find out the correct corresponding relationships. According to the 
decryption algorithm Decrypt  [21], if there are not enough correct corresponding 
relationships, the cloud server cannot decrypt the indexes to obtain the identities of documents. 
According to Theorem 2, the “enough” means that max| | | |O ww w w e′∩ ≥ − . 

We give the following four properties, which could help the cloud to efficiently find out the 
corresponding relationships which may be correct. In the following properties, i

wm  is the i th 

value in the word pattern of w , and j
wm ′  is the j th value in the word pattern of w′ . 

pA B→  denotes, if there is A , then there is B  with the probability p . Note that: (1) For 
each i

wc  and i
wm , mod | |i i w=  if | |i w> ; (2) For each j

wc ′  and j
wm ′ , mod | |j j w′=  if 

| |j w′> . Thus, the meaning of "contiguous" in the following properties is more general. For 
example, | | 1w

w wc c  in w , and | | 1w
w wc c′′ ′  in w′  are all contiguous characters. 

For clarity, we use the notations i
wc , j

wc ′  to illustrate the idea of properties and optimization 
approach. In fact, the properties and optimization approach are used to handle the components 


i
wc

C , j
wc

D
′
. i

wc  and i
wc

C  have the same order i . j
wc ′  and j

wc
D

′
 have the same order j . Thus, 

if there is ,i j
w wc c ′< > , then there is the corresponding relationship  ,i j

w wc c
C D

′
< > . 

The following properties show the relationships between two words and their word patterns. 
As these properties are easy to be proofed, we do not give the proof of them. 
Property 1. 1 1 1 1andi j i j i j

w w w
p

w w wm m c c c c+ + + +
′ ′ ′= = =→  

Property 2. 1 2 1 1( ... ) m dd no ai i i k j i j i k j
w w w w w w w

p
wm m m sp m c c c c+ + + + + +

′ ′ ′+ = = = →+ +   

Property 3. 1 1 2 1( ... ) mo andd pi j j j k i j i j k
w w w w w w w wm m m m sp c c c c+ + + + + +

′ ′ ′ ′ ′= + + + → = =  

Property 4. 1 2 1 2( ... ) mod ( ... ) modi i i k j j j t
w w w w w wm m m sp m m m sp+ + + + + +

′ ′ ′+ + + = + + +  

andp i j i k j t
w w w wc c c c+ +

′ ′→ = =  
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According to the above properties, many corresponding relationships could be found. 
However, in these corresponding relationships, there are many wrong corresponding 
relationships. This is because that a corresponding relationship is correct only with the 
probability 21/ (| | / )charp S sp=  (see Section 3). As wrong corresponding relationships will 
reduce the efficiency of the query, we give an optimization approach to eliminate the wrong 
corresponding relationships as many as possible. The optimization approach is given below. 

Step 1, given the word patterns of w  and w′ , the cloud could compute quite a few 
corresponding relationships according to Property 1, 2, 3 and 4. Note that, if the maximal 
error-tolerance value of w  is we , the k  in the above properties should satisfy 1wk e≤ + . 
This is because, if the first and the last character in a 1k +  contiguous-character string have 
been matched, it means that there are 1k −  typos. Thus we have 1 wk e− ≤  (namely, 

1wk e≤ + ). For the same reason, the t  in the Property 4 should satisfy 1wt e≤ + . Finally, 

the cloud can obtain a set, denoted by 1 {( , , , ),...}i j p q
Step w w w wSet c c c c′ ′= < > < > . 

Step 2, if the i th character in w′  corresponds to the j th character in w , it is obvious that 
i  and j  should satisfy | | wi j e− ≤ . Thus, the cloud should delete ( , , , )i j p q

w w w wc c c c′ ′< > < >  
in 1StepSet  if | | wi j e− ≤/  or | | wp q e− ≤/ . For clarity, let 2StepSet  denote the set, in which 

some wrong corresponding relationships in 1StepSet  have been deleted. 

Step 3, if ( , , , )i j p q
w w w wc c c c′ ′< > < > is correct, both ,i j

w wc c ′< >  and ,p q
w wc c ′< >  should 

appear in 2StepSet  at least 2 times. Otherwise, ( , , , )i j p q
w w w wc c c c′ ′< > < >  is wrong and should 

be deleted. Let 3StepSet  denote the set of corresponding relationships after executing Step 3. 

Step 4, for each 3( , , , )i j p q
w w w w Stepc c c c Set′ ′< > < > ∈ , the cloud extracts ,i j

w wc c ′< >  and 

,p q
w wc c ′< > . Then, the cloud adds ,i j

w wc c ′< >  and ,p q
w wc c ′< >  into a set, denoted by 

4 { , }i j
Step w wSet c c ′= < > . If a tuple has been added into the set, the cloud does not add it again. 

Step 5, the cloud extracts all the corresponding relationships from 4StepSet . If the total of 

corresponding relationships is less than max| | ww e− , this means that w′  and w  do not fuzzy 
match. Otherwise, the cloud calculates all the combinations (each combination contains 

max| | ww e−  corresponding relationships). Let 5StepSet  denote the set of these combinations. 

Step 6, for each combination in 5StepSet , the cloud sorts its corresponding relationships. Let 

( 1 1,i j
w wc c ′< > , 2 2,i j

w wc c ′< > , 3 3,i j
w wc c ′< > , ..., ,n ni j

w wc c ′< > ) denote a sorted combination, where 

max| | wn w e= −  and 1 2 ... ni i i< < < . Then, the cloud checks whether 1 2 ... nj j j< < < . If the 
combination does not satisfy 1 2 ... nj j j< < < , the cloud deletes the combination in 5StepSet . 

Recall the explanation of | |Ow w′∩  in Section 3, 1 2( , ,..., )ni i i  and 1 2( , ,..., )nj j j  represents 
the orders of character-appearing orders of w  and 'w . Thus, 1 2( , ,..., )ni i i  and 1 2( , ,..., )nj j j  

should be in strictly monotone increasing order. Let 6StepSet  denote the set of combinations 
after executing Step 6. 
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Step 7, for each combination 3 31 1 2 2( , , , , , ,..., , )n ni j i ji j i j
w w w w w w w wc c c c c c c c′ ′ ′ ′< > < > < > < > in 

6StepSet , the cloud checks whether it is correct. According to the definition of word pattern 
(Definition 4), a correct combination should satisfy,  

31 1 2 1 1 2 2 2

3 1 1 1 12 2

1 2 1 2 1 2

1 2 1 21 2

( ... ) mod ( ... ) mod , ( ... ) mod

( ... ) mod ,..., ( ... ) mod ( ...

) mod

n n n n n

n

ii i i j j j i i
w w w w w w w w w

j i i i j jj j
w w w w w w w w

j
w

m m m sp m m m sp m m m

sp m m m sp m m m sp m m

m sp

− − − −

+ + + + + +
′ ′ ′

+ + + ++ +
′ ′ ′ ′ ′

′

+ + + = + + + + + +

= + + + + + + = + +

+ 1

1

1 2 1 2| | 1 2 | |

1 2

, ( ... ... ) mod ( ...

... ) mod

n n n ni i j jiw w
w w w w w w w w w
j

w w w

m m m m m m sp m m m

m m m sp

′+ + + +
′ ′ ′

′ ′ ′

+ + + + + + + = + + + +

+ + +
Otherwise, the combination is wrong and should be deleted from 6StepSet . Let 7StepSet  denote 
the set of combinations after executing Step 7. 

4.5 Fuzzy Keyword Search Algorithm supporting Access Control 
Before describing the fuzzy keyword search algorithm supporting access control (FKSAAC), 
we first illustrate the algorithm Decrypt . Then, we give the search algorithm FKSAAC. 
Decryption Algorithm in FKSAAC. Most parts of the decryption algorithm in our method 
are the same as the decryption algorithm in Bethencourt’s method [21]. However a few parts 
are different. In Bethencourt’s method [21], in the trees (e.g. 

DpT ) which are associated with 
ciphertexts, the attributes in leafs are stored in the form of plaintext. In our method, in the trees 
(e.g. *

DpT ) which are associated with indexes: (1) If the leafs are associated with characters of 

keywords, the word pattern values (for example, ( , )MF w i , 1, 2,...,| |i w= ) are stored in 
these leafs (the characters of keywords are not stored because the privacy of keywords should 
be proctected). (2) If the leafs are associated with attributes, these attributes are stored in these 
leafs in the form of plaintext (this part is the same as [21]). Thus, before representing the 
algorithm FKSAAC, we want to briefly illustrate the decryption algorithm Decrypt  which 
has been slightly modified in our method. 

Decrypt  takes as input an index DIdx  and a trapdoor wTd ′  of w′ . A document policy is 
embedded in the index DIdx , and the document policy consists of several error-tolerance 
policies and an access control policy. If and only if (1) w′  satisfies one of the error-tolerance 
policies in DIdx  and (2) the attributes of u  satisfy the access control policy, Decrypt  could 
decrypt DIdx  and output the identity of  . Otherwise, it outputs a meaningless string ⊥ . 

First, we introduce the recursive algorithm '( , , )D wDecryptNode Idx Td x  in Decrypt , 

where x  is a leaf of *
DpT . Let ( )i f x=  ( i  is a character or an attribute associated with x ). 

We should note that: (1) If x  is associated with an attribute, DecryptNode  could efficiently 
compute ( )i f x= . This is because attributes in the leafs of *

DpT  are stored in the form of 
plaintext (this part is the same as [21]). (2) If x  is associated with a character of a keyword, 
DecryptNode  can compute ( )i f x=  by using word patterns (see Section 3 and 4.4), where 

( )i f x=  is a correct corresponding relationship (this part is the difference between our 
method and [21]). Then, the algorithm DecryptNode  computes as follows, 
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(0)
(0)

(0)

( , ) ( ( ) , )( , , ) ( , )
( , ) ( , ( ) )

i x
x

i x

q
qi x

D q
i x

e D C e g H i hDecryptNode Idx Td x e g g
e D C e g H i

γγ

′ γ
γ

′

⋅
= = = . Otherwise, 

( , )DDecryptNode Idx Td  outputs ⊥ . 
The rest parts of Decrypt  in our method are the same as [21] and we briefly describe them 

as follows. When x  is a non-leaf node, the algorithm ( , , )D wDecryptNode Idx Td x′  proceeds 
as follows. For all nodes z  that are children of x , it calls DecryptNode  and stores the 
output as zF . Suppose x  is associated with the threshold gate ( , )x xT n m . If there exists xn  

outputs, which are not ⊥ , ( , , )D wDecryptNode Idx Td x′  outputs (0)( , ) xqe g g γ . When x R=  

is the root of *
DpT , ( , , )D wDecryptNode Idx Td R′  outputs (0)( , ) Rqe g g γ . Recall that, (0)Rq  is 

set to s  (see Section 4.2). Thus, we have (0)( , ) ( , )Rq se g g e g gγ γ= . Then, the algorithm 
Decryption  decrypts DIdx  by computing 

 ( )// ( ( , ) / ( , ) ) ( || 0 ) ( , ) / ( ( , ) / ( , ) ) || 0s l s s s l
D DC e C D e g g ID e g g e h g e g g IDγ α α+γ β γ= = .  

Finally, the algorithm Decrypt  outputs the identity DID  of  . 
Search Algorithm FKSAAC. For each document, the cloud server runs the algorithm 
FKSAAC to test whether the searched word fuzzy matches the keywords in a document. 
FKSAAC takes as input the trapdoor wTd ′  of a searched word w′  and the index DIdx  of an 
encrypted document  . FKSAAC outputs the identity DID  of  , if and only if (1) w′  
satisfies ( , )

ii wed w w e′ ≤  (represented by an error-tolerance policy of  ), where iw  is one 

of the keywords in  , and (2) attributes in wTd ′  satisfy the access policy of  . Otherwise, 
FKSAAC outputs false. The search algorithm FKSAAC is described as follows. 

Step 1. For each subtree i

et

w
pT  (it represents the keyword iw ) in *

DpT , FKSAAC computes 

| |iw  according to the number of ciphertext components and computes | |w′  according to the 
number of secret key components in wTd ′ . If | | | |

ii ww e w′− ≤/  or | | | |
ii ww w e′ ≤ +/  (see 

Theorem 1), FKSAAC aborts the keyword iw  and then executes Step 1 to test the next 
keyword in DIdx . Otherwise, FKSAAC computes | | | |iw w′ − : (1) If | | | | 0iw w′ − ≤ , 
FKSAAC extracts ciphertext components from DIdx  s.t. these ciphertext components are 
associated with the value 1t = ; (2) If | | | | 0iw w′ − > , FKSAAC extracts ciphertext 
components from DIdx  s.t. these ciphertext components are associated with the value 

| | | | 1t w w′= − +  (see Theorem 2). 
Step 2. FKSAAC extracts the word pattern of iw  from the index DIdx  and the word 

pattern of w′  from the trapdoor wTd ′ . Then, FKSAAC could calculate the set 7StepSet  by 
executing the optimization approach in Section 4.4. Next, FKSAAC finds out which secret 
key component of an attribute in 'wTd  corresponds to which ciphertext component of an 
attribute in DIdx  (these relationships about attributes are easy to be obtained, because they are 
stored in plaintext). For each combination in 7StepSet , FKSAAC extracts the corresponding 
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relationships in it. Then FKSAAC runs the algorithm Decrypt  in our method to try to decrypt 

DIdx  by using these corresponding relationships and the relationships about attributes: (1) If 
Decrypt  outputs the identity DID  of  , FKSAAC returns DID . (2) If Decrypt  outputs ⊥ , 
FKSAAC tests the next combination in 7StepSet . If all the outputs of Decrypt  are ⊥ , 

FKSAAC executes Step 1 to test the next keyword in DIdx . 
Step 3. FKSAAC returns false. 

The cloud server runs FKSAAC to test all the indexes of encrypted documents, and then 
returns the encrypted documents whose identities have been retrieved to the user u . 

5. Experiments 
We compare our method FKS-AC with Fuzzy Keyword Search over Encrypted Data in Cloud 
Computing (FKS) [1] and Privacy-Preserving Multi-Keyword Fuzzy Search over Encrypted 
Data in the Cloud (PPMKFS) [17]. We also do the comparison works of FKS-AC when 
choosing different values as sp  ( sp  is the parameter in the word pattern function MF ). 

FKS-AC is implemented by using Java Pairing-Based Cryptography Library 2.0.0, which 
could support the calculations in bilinear groups. In FKS-AC, the character set charS  is 
{ , ,..., , , ,..., , }a b z A B Z − , the attribute set attrS  is 1 2 3{ , , }a a a  and the access control policies 
are " 1a  AND 3a ", " 2a  AND 3a ", " 1a  OR 2a ", etc. In order to compare FKS-AC, PPMKFS 
and FKS fairly (as PPMKFS and FKS do not support access control, the cloud has to test all 
the indexes for fuzzy search), we suppose the data owner distributes the attributes 1a , 2a  and 

3a  to users. Then, users have the privilege to search all the documents. Thus, FKS-AC also 
has to test all the indexes of documents after receiving a trapdoor from a user.  

 
Fig. 3. The time of building indexes 

 
Our experiments run on a win7 computer with four 2.80GHz CPUs and 4G RAM. We 

randomly extract 400 distinct keywords from the documents in ACM Digital Library. In these 
keywords, the minimal, maximal and average number of characters are 3, 14 and 8 
respectively. The documents is 1000 in total. Each document has 5 keywords, which are 
randomly chosen from these 400 keywords. Then, we compare the running times of index 
generation, trapdoor generation and fuzzy keyword search. Given a keyword w , its maximal 
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error-tolerance value is we . In FKS-AC and FKS, we set (1) 1we = , if | | 5w ≤ ; (2) 2we = , if 
5 | | 10w< ≤ ; (3) 3we = , if | | 10w > . To generate a searched word w′ , we randomly chooses 

we  characters as typos, and insert them into w . Thus, the number of characters in w′  is 
| | ww e+  ( | | 4,5,...,17w′ = ). In PPMKFS, we set 1we =  whether w  is a long keyword or not. 
This is because the number of typos allowed by PPMKFS is fixed when LSH has been chosen. 

The time of index generation. Fig. 3 (a) shows the times of index generation in FKS-AC, 
FKS and PPMKFS: (i) The index generation times are linear to the number of documents; (ii) 
FKS and PPMKFS are more efficient than FKS-AC. Fig. 3 (b) shows that the times of index 
generation of FKS-AC when setting the parameter sp  to different values. 

Analysis of the results. As FKS-AC, FKS and PPMKFS generate index per document, thus 
the times of index generation are linear to the number of documents. The index generation of 
FKS is constructed on AES. As AES is a symmetric encryption method and the computing 
overhead is very low, FKS is very efficient. PPMKFS is constructed on LSH and BF (LSH and 
BF consist of hash functions).  ad of LSH and BF is much less than AES, the index 
generation of PPMKFS is more efficient than FKS. In order to support access control, 
FKS-AC is constructed on CP-ABE. CP-ABE is an asymmetric encryption scheme and 
requires complicated calculations. Thus, FKS-AC spends more time building indexes. 
Additionally, FKS-AC should calculate the word patterns for keywords. As the computing 
overhead of word patterns does not increase when choosing different values as sp , the times 
of index generation of FKS-AC are the same when sp  is set to 43, 47 and 53 respectively. 

As the data owner generates indexes before outsourcing documents to the cloud, index 
generation could be seen as the initialization work before providing the search service. Thus, 
we think the low efficiency of index generation in FKS-AC could be tolerated. 

 

 
Fig. 4. The time of generating a trapdoor 

 
The time of trapdoor generation. As shown in Fig. 4 (a), FKS-AC is the most efficient, 

and FKS costs more time for trapdoor generation. From Fig. 4 (b), we can see that the times of 
FKS-AC are almost the same when sp  is set to different values. 

Analysis of the results. In FKS-AC, trapdoor is generated on user client. A user only puts 
some secret key components together according to the character-appearing order of w′ , and 
then computes the word pattern of w′ . Thus, the trapdoor generation in FKS-AC is very 
efficient. In PPMKFS, trapdoor is generated by data owner. The data owner generates the 
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trapdoor for a user by executing LSH and BF. As LSH and BF consist of dozens of hash 
functions, the trapdoor generation of PPMKFS is slower than FKS-AC. In FKS, the trapdoor is 
generated on user client. Before generating a trapdoor for a searched word, the user should 
first generate a fuzzy keyword set. However, a long searched word necessitates to issue a large 
set whose size is (| | )weO w ′′  ( 1we ′ =  if 5w′ ≤ ; 2we ′ =  if 5 10w′< ≤ ; 3we ′ =  if 10w′ > ). 
Thus, when | |w′  increases, the size of the set increases rapidly. Then, the user encrypts each 
word in the set, and their ciphertexts are as the trapdoor of the searched word. Thus, the 
efficiency of trapdoor generation of FKS is the lowest. As shown in Fig. 4 (b), when setting 
sp  to different values, the trapdoor generation times of FKS-AC are almost the same. This is 
because the computing overhead of word pattern does not increase when choosing different 
values as sp . 

The time of fuzzy search. Fig. 5 shows the average time of search when | | 4,5,...,17w′ = . 
From Fig. 5 (a), we can see that PPMKFS is the most efficient. FKS has a better performance 
than FKS-AC when | | 10w′ < . FKS-AC is more efficient than FKS when | | 10w′ > . From Fig. 
5 (b), we can see that the search efficiency of FKS-AC could be improved by increasing sp . 

Analysis of the results. As PPMKFS performs fuzzy search only by multiplying two 
groups of vectors (one group of vectors is a trapdoor and the other is the index of a document), 
PPMKFS is very efficient. However, the search result of PPMKFS is not accurate. This is 
because PPMKFS is based on BL and LSH. Both BL and LSH introduce false positives (a 
false positive is that, a document should not be in the search result, but it is). Additionally, 
LSH introduces false negatives (a false negative is that, a document should be in the search 
result, but it is not). As the shortcomings of BL and LSH, PPMKFS can not provide the 
accurate search results. Compared with PPMKFS, FKS and FKS-AC are accurate methods 
and do not introduce any false positives or false negatives. We explain the exerimental results 
(as shown in Fig. 5) of FKS and FKS-AC in detail below. 

In FKS, each trapdoor consists of all the ciphertexts of possible misspellings of 'w . Thus, 
when | |w′  increases, the size of trapdoor increases rapidly. When performing a fuzzy search, 
as the cloud has to compare each ciphertext in the trapdoor of 'w  with the indexes of 
documens, the computing overhead of fuzzy search increases rapidly and inevitably results in 
a long search time. 

 

 
Fig. 5. The average time of fuzzy search 
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In FKS-AC, if the searched word 'w  is long, there are more secret key components in the 
trapdoor of 'w  which should be tested. Thus, FKS-AC should do more calculations in bilinear 
groups. Thus, as shown in Fig. 5 (a), the search time of FKS-AC increases when | |w′  
increases. Now we explain the reason why the efficiency decreases a lot when using the 
trapdoor of 'w  ( | | 12w′ = or 14 ) to perform fuzzy search. Recall that, FKS-AC should 
compute a set of combinations and try to decrypt indexes using these combinations. In the 
procedure of fuzzy search, wrong combinations would reduce the search efficiency of 
FKS-AC. When the searched word w′  is very similar to a keyword w  and the typos in w′  
does not exceed we , according to Theorem 2, there must exist some combinations that could 
be used to correctly decrypt the indexex of documents which contains w . However, when the 
searched word w′  is very similar to a keyword w , but the typos in w′  exceeds we , according 
to Theorem 2, all these combinations found by our algorithm FKSAAC are wrong 
combinations, which would waste a lot of time to try to decrypt indexes. For example, when 
using w consttructionn′ =  to search 1w construction=  (

1
3we = ), as the typos in w′  does 

not exceed 
1

3we = , FKS-AC could find out some right combinations. Then FKS-AC could try 
to decrypt the index by using these combinations, and the search efficiency would not decrease 
obviously. However, when using w consttructionn′ =  to search 2w contributions=  
(

2
3we = ), as w′  is very similar to 2w , our algorithm could also find some combinations. 

However, as the number of typos in w′  exceeds 
2

3we = , according to Theorem 2, all these 
combinations found by our algorithm FKSAAC are wrong combinations. As the cloud does 
not know which combinations are wrong, all these wrong combinations should be used to try 
to decrypt the indexes of documents which contains 2w . Thus, the search efficiency decreases 
obviously. Note that, in the above example, 1w  and 2w  look very similar, but the edit distance 
between them is great than the maximal error-tolerance values allowed by them. In our 
experiments, the tested keyword are randomly chosen from ACM Digital Library. When 
| | 12w′ =  or 14 , there are many such keywords like 1w  and 2w . For example, "adaptation" 
and "adsorption", "Automation" and "Automobiles", etc. Thus, the search time of FKS-AC 
increases a lot when | | 12w′ =  and 14 . 

From Fig. 5 (b), we can see that, the search efficiency increases with the value of sp . This 
is because larger sp  could help the cloud to find corresponding relationships more accurate 
and efficient. Namely, a larger sp  could reduce the number of wrong combinations found by 
our algorithm FKSAAC. Thus, the search efficiency increases when sp  increases. 

6. Security Analysis 

6.1 Security Analysis of FKS-AC about Collusion Attack. 
In our method, we adopt CP-ABE scheme [21] to generate secret keys for different users. 
Users use their secret keys to generate trapdoors for searching keywords. As the CP-ABE 
scheme is collusion-resistance (it has been proofed in [21]). Thus, users’ secret key 
components generated by CP-ABE scheme cannot be colluded to decrypt the ciphertexts 
which beyond the privileges of users. Additionally, in our method, a user could generate new 
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secret keys by running the algorithm Delegate , and then use the new secret keys to construct 
trapdoors. As new secret keys and old secret keys can not be colluded (it has been proofed in 
[21]), the secret key components in the trapdoors from the same user cannot be colluded. 

6.2 Security Analysis of FKS-AC in the Known Ciphertext Model. 
Known Ciphertext Model [17, 23, 24]: The cloud server can only access (1) the encrypted 
documents, (2) the indexes, (3) the word patterns of keywords and searched words, (4) the 
submitted trapdoors, and (5) the search results. 

According to the known ciphertext model, if the adversary records the word patterns, 
trapdoors and search results, the adversary can build up access patterns. Therefore, under the 
known ciphertext model, nothing beyond the access patterns and the search results should be 
leaked. In the following paragraphs, iw  denotes a keyword and 'iw  denotes a searched word. 
We use the notation ,i wiw eS  to denote the collection of 'iw  satisfying '( , )

ii i wed w w e≤ , where 

( , )'i ied w w  denotes the edit distance between iw  and 'iw , and 
iwe  denotes the the maximal 

error-tolerance value of iw . We adapt the definitions in [4, 17, 25] for our proofs. 
Definition 7. Search Pattern ( π ): Let 1{ ,...,' '}nQ w w=  be the set of searched words for n  
consecutive queries, then π  be a binary matrix s.t. [ , ] 1i jπ =  if ,'

i wii w ew S∈  and 

,'
i wij w ew S∈ , otherwise [ , ] 0i jπ = . 

Definition 8. Access Pattern ( pA ): Let '( )iD w  ( ,'
i wii w ew S∈ ) be a collection that contains the 

identities of documents which contain the keyword iw . Let 1{ ,..., }nT T T=  be the trapdoors 
for the query set 1{ ,...,' '}nQ w w= . Then, Access Pattern for the n  trapdoors is defined as 

1 1{ ( ) ( ),..., ( ) ( )}' 'p p n nA T D w A T D w= = . 

Definition 9. History ( nH ): Let D  be the document collection and 1{ ,...,' '}nQ w w=  be the 
searched words for n  consecutive queries. Then, ( , )nH D Q=  is defined as a n -query 
History. 
Definition 10. Trace ( γ ): Let 1{ ,..., }lC C C=  be the collection of encrypted documents, 

( )iid C  be the identity of iC , | |iC  be the size of iC , 
iwP  be the word pattern of iw , 'iwP  be 

the word pattern of 'iw , ( )p nS H  be the Search Pattern of nH  and ( )p nA H  be the Access 

Pattern of nH . Then, ( )nHγ =  1{( ( ),..., ( ))lid C id C , 1(| |,...,| |),lC C
1

( ,..., ),
nw wP P  

1 '( ,...,wP  ' )nwP , ( )p nS H , ( )}p nA H  is defined as the trace of nH . Trace is the maximum 
amount of information that a data owner allows to leak to an adversary. 
Definition 11. View (V ): Let 1{ ,..., }lC C C=  be the collection of encrypted documents, 

( )iid C  be the identity of iC , I  be the collection of indexes of C , 
1

( ,..., )
nw w wP P P=  be the 

collection of word patterns of keywords, 
1 ' '( ,..., )

nw w wP P P′ =  be the collection of word 

patterns of searched words, and 1{ ,..., }nT T T=  be the collection of trapdoors. Then, 

1( ) {( ( ),..., ( )), , , , , }n l w wV H id C id C C I P P T′=  is defined as the view of nH . View is the 
information that is accessible to an adversary. 
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We adopt a similar simulation based proof, which is widely used in [4, 17]. Intuitively, 
given two histories with the same trace, if the adversary cannot distinguish which of them is 
generated by the simulator, the adversary cannot learn additional information about the index, 
trapdoors and the encrypted documents beyond the search result and the access pattern [17]. 
Theorem 3. FKS-AC is secure under the known ciphertext model. 
Proof. The notation S  denotes the simulator, which can simulate a view *V .  *V  is 
indistinguishable from an adversary’s view 1( ) {( ( ),..., ( )), , , , , }n l w wV H id C id C C I P P T′= . 
To achieve this, the simulator S  does the followings: 
(1) Identities of documents are available in the trace. Thus, S  can copy these identities, that 

is, * *
1 1{ ( ) ( ),..., ( ) ( )}l lid C id C id C id C= = . As identity lists of the adversary’s view V  

and the simulated view *V  are the same, they are computationally indistinguishable. 
(2) S  chooses l  random values * *

1{ ,..., }lC C , s.t. * *
1 1| | | |,...,| | | |l lC C C C= = . The 

documents are encrypted by using a secure encryption scheme (e.g. AES). Thus, the 
outputs of the secure encryption scheme is computationally indistinguishable from 
random values. Hence, *

iC  and iC  are computationally indistinguishable. 
(3) S  runs the algorithm Setup  to obtain a public key PK  and a master key MK , and then, 

S runs the algorithm KeyGen  to obtain a secret key SK . 
(4) S  constructs n  consecutive queries * * *

1{ ' ,..., ' }nQ w w= , the word patterns 

* * *
1' ' '

( ,..., )
nw w w

P P P= , and the trapdoors * * *
1{ ,..., }nT T T= . For each 'iw Q∈ , 1 i n≤ ≤ , 

S  generates the searched word *'iw  randomly, s.t. *| |' | |'i iw w= . Then, S  computes the 

word pattern of *'iw . As *'iw  is generated randomly, the word pattern of *'iw  is 
computationally indistinguishable from random values. Note that, the searched word 'iw  
may have typos, and additionally, 'iw  has been inserted several random characters at 

random positions (see the trapdoor in Section 4.3). Thus, the word patterns of *'iw  and 

'iw  are computationally indistinguishable. According to the characters in *'iw , S  

generates the trapdoor *
iT  for *'iw  by utilizing the secret key components in SK . As the 

secret key SK  is indistinguishable from random values [21], the trapdoor *
iT  generated 

by utilizing SK  is indistinguishable from random values. For the same reason, the 
trapdoor iT  for 'iw  is also indistinguishable from random values. Hence, the trapdoors 

*
iT  and iT  are computationally indistinguishable. 

(5) For each *
iC , S  sets an empty set *

iC
Set , where 1 i l≤ ≤ . According to the access 

pattern pA , if ( )iid C  could be retrieved by using the word 'jw , then S  adds *'jw  to 

*
iC

Set , where 1 j n≤ ≤ . The set *
iC

Set  is as the keyword set of the encrypted document 
*

iC . Next, S  constructs the document policy for *
iC  by using the keywords in *

iC
Set , 

and runs the algorithm Encrypt  to generate the index *
iC

I  for *
iC . The ciphertext 
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generated by Encrypt  is as the index *
iC

I  of *
iC . As the ciphertext is indistinguishable 

from random values [21], the index *
iC

I  is indistinguishable from random values. For the 

same reason, the index 
iCI  generated by Encrypt  is also indistinguishable from random 

values. So 
iCI  and *

iC
I  are computationally indistinguishable. Then, the index collection 

I  for { |1 }iC i l≤ ≤  and *I  for *{ |1 }iC i l≤ ≤  are computationally indistinguishable. 

Since each item of V  and *V  are computationally indistinguishable, we have the onclusion 
that FKS-AC satisfies the security definition presented in Theorem 3.     

7. Related Work 
Li et al. [1] first propose a searchable encryption method supporting fuzzy keyword search. 
For each keyword, data owner use the wildcard technique to build a fuzzy keyword set which 
contains all the possible misspellings. The index and trapdoor are built on the set. To perform 
a search, the cloud checks whether there is intersection between the index and the trapdoor. To 
limit the size of the set, Liu et al. [14] propose a method which is based on a predefined 
dictionary. The dictionary is as a filter to delete the meaningless words in a user’s search. 
However, this method requires that a user should know much about the filed he/she queries. 
Kuzu et al. [4] propose a generic similarity search method based on Bloom Filter (BF) and 
Locality-Sensitive Hashing (LSH) [19, 26]. A LSH function hashes close items to the same 
hash value with higher probability than the items that are far apart. Thus the similarity of the 
keywords could be measured by using LSH functions. According the hash values of keywords, 
the data owner builds indexes using BF. Thus, the indexes could support fuzzy keyword search. 
In [17], Wang et al. propose a multi-keyword fuzzy search method. This method is also based 
on BF and LSH. However, as LSH can not hash close items to the same hash value with the 
probability 1, LSH inevitably results the in inaccurate search results. 
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