Bounding the Search Number of Graph Products

Nancy Ellen Clarke
Department of Mathematics and Statistics, Acadia University, Wolfville, Nova Sco-
tia, Canada
e-mail: nancy.clarke@acadiau.ca
Margaret-Ellen Messinger* and Grace Power
Department of Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada
e-mail: mmessinger@mta.ca and grace.power.4@gmail.com

Abstract. In this paper, we provide results for the search number of the Cartesian product of graphs. We consider graphs on opposing ends of the spectrum: paths and cliques. Our main result determines the pathwidth of the product of cliques and provides a lower bound for the search number of the product of cliques. A consequence of this result is a bound for the search number of the product of arbitrary graphs G and H based on their respective clique numbers.

1. Introduction

Imagine that a security system has indicated the existence of a camouflaged, mobile intruder in some physical or computer network. How can a set of guards, or searchers, locate this intruder? Such a question can be considered using a graph searching model. In this type of model, an intruder can, at any time, move infinitely fast from vertex u to vertex v along any path that contains no searchers. To search a graph, it is necessary to formulate and execute a search strategy: a sequence of actions designed so that, upon their completion, all edges (and therefore vertices) of the graph have been cleared of the invisible intruder. In such strategies, three actions are permitted and each action may occur multiple times:

- place a searcher on a vertex;
- move a single searcher along an edge $u v$, starting at u and ending at v;

* Corresponding Author.

Received February 18, 2017; accepted July 4, 2018.
2010 Mathematics Subject Classification: 05C57, 68R10.
Key words and phrases: graph searching, sweeping, pathwidth.

- remove a searcher from a vertex.

An edge $u v$ can be cleared of the invisible intruder in one of two ways: (i) at least two searchers are located at vertex u, and one of these searchers traverses $u v$ to vertex v; (ii) at least one searcher is located at u, all edges incident with u, other than $u v$, have already been cleared of the intruder, and the searcher traverses the edge $u v$ to vertex v. Naturally, the fundamental question is: what is the fewest number of searchers for which a search strategy exists? Using the terminology of [21], we call this parameter the search number of G and denote it by $s(G)$. The parameter has also been referred to as the edge-search number es (G) (see [10], for example) and the sweep number $s w(G)$ (see [1], for example). In the literature, searching has been related to pebbling and thus to computer memory usage; it also has applications to assuring privacy when using bugged channels, to VLSI circuit design, and to clearing networks with brushes (see [1, 8, 9, 12, 15, 21]). The field of graph searching is rapidly expanding and in recent years new models, motivated by applications and foundational issues in computer science, have appeared.

Although the associated decision problem is $N P$-complete [14], the search number is known for many classes of graphs and bounds exist for graphs with particular properties (see [1, 5, 21], for example). However, very little is known about the search number of Cartesian products. The Cartesian product of graphs G and H, denoted $G \square H$, has vertex set $V(G \square H)=V(G) \times V(H)$, and $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in$ $E(G \square H)$ if and only if (1) $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$, or (2) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$. In 1987, Tošić [20] provided an upper bound for the search number of $G \square H$ based on the respective cardinalities and search numbers of G and H. In 1992, Kinnersley [11] showed $p w(G)=v s(G)$, where $p w(G)$ denotes the pathwidth (defined below) and $v s(G)$ the vertex separation number of a graph G. In 1994, Ellis et al. [6] showed $v s(G) \leq s(G) \leq v s(G)+2$. For the Cartesian product $G \square H$, these results imply

$$
\begin{equation*}
p w(G \square H) \leq s(G \square H) \leq p w(G \square H)+2 . \tag{1.1}
\end{equation*}
$$

However, as the associated decision problem for pathwidth is NP-complete, the lower bound is not necessarily useful in practice.

In this paper, we consider input graphs at opposing ends of the spectrum: paths and cliques. In Section 2, we determine $s\left(P_{m} \square P_{n}\right)$ and $s\left(K_{m} \square P_{n}\right)$. In Section 3, we determine $p w\left(K_{m} \square K_{n}\right)$ and exploit the relationship between the search number and pathwidth to show

$$
s(G \square H) \geq s\left(K_{m} \square K_{n}\right) \geq p w\left(K_{m} \square K_{n}\right)= \begin{cases}\frac{m}{2} n+\frac{m}{2}-1 & \text { if } m \text { even } \tag{1.2}\\ \left\lceil\frac{m}{2}\right\rceil n-1 & \text { if } m \text { odd }\end{cases}
$$

where m, n are the clique numbers of G, H, respectively. Inequality (1.2) is given by Corollary 3.12 and results from applying Corollary 3.1, Lemma 3.2, and Corollary 3.10.

To conclude this section, we define the pathwidth of a graph G and state a simple, but useful, lemma.

Definition 1.1. A path decomposition of a graph G is a sequence of subsets of vertices $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ such that
(i) $\bigcup_{1 \leq i \leq r} B_{i}=V(G)$;
(ii) For all edges $v w \in E(G), \exists i \in\{1,2, \ldots, r\}$ with $v \in B_{i}$ and $w \in B_{i}$;
(iii) For all $i, j, k \in\{1,2, \ldots, r\}$, if $i \leq j \leq k$ then $B_{i} \cap B_{k} \subseteq B_{j}$.

The width of a path decomposition $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ is $\max _{1 \leq i \leq r}\left|B_{i}\right|-1$, and the pathwidth of G, denoted $p w(G)$, is the minimum width over all possible path decompositions of G.

See the survey [2] for more on pathwidth; the convention is to refer to subsets $B_{1}, B_{2}, \ldots, B_{r}$ as bags. It can easily be seen that an equivalent statement of (iii) is:
Fact 1.2. For each $v \in V(G)$, the set of bags $\left\{B_{i} \mid v \in B_{i}\right.$ and $\left.1 \leq i \leq r\right\}$ must form a subpath in the decomposition;
i.e. the indices of the set of bags are an interval. (The important point here is that the subpath is, by definition, connected.)

To avoid confusion between a path of vertices in a graph and a path of bags in a path decomposition, we will refer to a path of bags as a bag-path. The next result will be used in Section 3 with respect to products of cliques. Though the original results are stated for tree decompositions, they obviously apply to path decompositions. A short proof of the result for tree decompositions exists in [4], but the authors state that earlier proofs exist in $[3,18]$.
Lemma 1.3.([4]) Consider a path decomposition $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ of graph G, for some positive integer r. Let $W \subseteq V(G)$ be a clique in G. Then $W \subseteq B_{i}$, for some $1 \leq i \leq r$.

2. Search Number of $P_{m} \square P_{n}$ and $P_{m} \square K_{n}$

Ellis and Warren [7] proved that for $m \geq n, p w\left(P_{m} \square P_{n}\right)=n$ which by Inequality (1.1) implies $s\left(P_{m} \square P_{n}\right) \in\{n, n+1, n+2\}$. In this section, we determine $s\left(P_{m} \square P_{n}\right)$ exactly. The notion of a search strategy was described in Section 1 as a sequence of actions designed so that once completed, all edges (and therefore vertices) of the graph have been cleared of the invisible intruder. We note that during the search strategy, recontamination of cleared edges may occur. However, if a search strategy exists for a connected graph, once every searcher has been placed on the graph, only the action of moving a searcher along an edge is required for the remainder of the search strategy (i.e. instead of removing a searcher from a vertex x and placing it on a vertex y, the searcher could move along a path from x to y). Thus, if a search strategy exists for a connected graph, then the graph can be cleared by placing the searchers at a set of vertices and then, at each time step, moving one searcher along an edge. This approach is sometimes called internal searching in the literature and we use it in the proof of Lemma 2.1. Additionally,
at a given time step, any edge that is not clear is considered to be dirty and, if it can be recontaminated, then it is recontaminated instantly.

Lemma 2.1. For $n \geq 3, s\left(P_{n} \square P_{n}\right) \geq n+1$.
Proof. Let $n \geq 3$ and label the vertices of $P_{n} \square P_{n}$ as $v_{i, j}$ for $1 \leq i, j \leq n$. For a contradiction, suppose there exists a search strategy for $P_{n} \square P_{n}$ that uses n searchers. Let R_{i} be the subgraph induced by $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\}$ and C_{j} be the subgraph induced by $\left\{v_{1, j}, v_{2, j}, \ldots, v_{n, j}\right\}$; we informally refer to the subgraphs R_{i} and C_{j} as row i and column j, respectively. Let t be the last time step for which
(i) at the end of step $t-1$, at least one edge of each of R_{i} and C_{i} is dirty for all $i \in[n]$, and
(ii) at the end of step t, every edge of C_{k} is clear for some $k \in[n]$. (Note that once C_{k} is cleared, it never becomes dirty again.)

Certainly there must be such t in order for there to exist a search strategy of $P_{n} \square P_{n}$. Suppose that for some $x \in[n], R_{x}$ does not contain a searcher at the end of step t. Then as R_{x} contains a dirty edge, it is recontaminated, and so the edge of C_{x} incident with $v_{x, k}$ is too, contradicting (i). Therefore, at the end of step t, every row contains at least one searcher.

From (i) and (ii), we conclude that a searcher moves wlog from $v_{i+1, k}$ to $v_{i, k}$ during step t for some $i \in[n-1]$. If $i>1$, a searcher must be located at $v_{i, k}$ immediately prior to step t because edge $\left(v_{i, k}, v_{i+1, k}\right)$ was dirty but edge ($v_{i-1, k}, v_{i, k}$) was clean. Therefore, at the end of step t, there are two searchers located at $v_{i, k}$ and all other rows contain at least one searcher: $s\left(P_{n} \square P_{n}\right) \geq n+1$. To complete the proof, we assume $i=1$ and let $t^{\prime}>t$ be the time step during which a second row or column is cleared.
Claim 1: After step t and before step t^{\prime}, no searcher can move from one row to another.

Since only n searchers are available, there is exactly one searcher in each row at the end of step t. Suppose that after step t and before step t^{\prime}, a searcher moves from row j to row $j+1$ or $j-1$. Since R_{j} contains a dirty edge (by (i) and (ii)) but no searcher, any clear edges in R_{j} become recontaminated along with the two edges of C_{k} incident with $v_{j, k} \in R_{j} \cap C_{k}$. Claim 1 has been proven.
Claim 2: At the end of step t, every edge in R_{1} is dirty.
During step t, a searcher moves from $v_{k, 2}$ to $v_{k, 1}$ and at the end of step t, there is exactly one searcher in each row. Then at the end of step $t-1$, there is no searcher in R_{1} (else there are $n+1$ searchers) and, by (i), edge ($v_{1, k} v_{2, k}$) is dirty. Thus, every edge in R_{1} is dirty at the end of step $t-1$ and also at step t. Claim 2 has been proven.

To conclude the proof, we consider two cases: $k \in\{2,3, \ldots, n-1\}$ and $k \in$ $\{1, n\}$.

Case 1: Suppose $k \in\{2,3, \ldots, n-1\}$. For $j \in[n]$, let s_{j} be the searcher in R_{j} at the end of step t. At the end of step t, s_{1} is located at $v_{1, k}$ and by Claim 2, every edge of R_{1} is dirty. Since every edge in R_{1} is dirty, every vertex of $R_{2} \backslash\left\{v_{2, k}\right\}$ is incident with a dirty edge. As there is only one searcher in R_{2}, s_{2} must be located at $v_{2, k}$ (otherwise C_{k} is recontaminated via $v_{2, k}$). By repeating this argument, we find that s_{i} must be located at $v_{j, k}$ for each $j \in[n]$. Then each searcher is located at a vertex incident with at least two dirty edges, and so no searcher can move at step $t+1$ without said move resulting in recontamination of at least two edges of C_{k}. Therefore, $s\left(P_{n} \square P_{n}\right) \geq n+1$.
Case 2: Suppose $k \in\{1, n\}$ and wlog assume $k=1$. Then during step t, searcher s_{1} moves from $v_{2,1}$ to $v_{1,1}$. By Claim 2, at the end of step t, edge $\left(v_{1,2}, v_{1,3}\right)$ is dirty. Then adjacent edge $\left(v_{1,2}, v_{2,2}\right)$ is also dirty at the end of step $t-1$. Thus, after step t and before step t^{\prime}, s_{1} may move to $v_{1,2}$, but cannot move elsewhere by Claim 1 (and because $v_{1,2}$ has at least two incident dirty edges). Thus, at the end of step $t^{\prime}-1, s_{1}$ is located at either $v_{1,1}$ or $v_{1,2}$ and edge $\left(v_{1,2}, v_{2,2}\right)$ is dirty. Similarly, at the end of step $t^{\prime}-1$ for $j \in\{2,3, \ldots, n-2\}$, if s_{j} is located at a vertex of $\left\{v_{j, 1}, v_{j, 2}, \ldots, v_{j, i}\right\}$ then edges $\left(v_{j, j}, v_{j, j+1}\right)$ and $\left(v_{j, j}, v_{j-1, j}\right)$ are dirty. To prevent recontamination of the edges in C_{1}, searcher s_{j+1} must be located at a vertex of $\left\{v_{j+1,1}, v_{j+1,2}, \ldots, v_{j+1, j+1}\right\}$ at the end of step $t^{\prime}-1$.

Note that searcher s_{n} cannot be located at $v_{n, n}$ at the end of step $t^{\prime}-1$; otherwise R_{n} would be clear before step t^{\prime}. Thus, s_{n} is located on one of $\left\{v_{1, n}, v_{2, n}, \ldots, v_{n-1, n}\right\}$ at the end of step $t^{\prime}-1$. As no searcher is located in C_{n} at the end of step $t^{\prime}-1$ and C_{n} contains at least one dirty edge, every edge of C_{n} is dirty at the end of step $t^{\prime}-1$.

For R_{j} to be clear by the end of step t^{\prime}, some searcher s_{j} must move from $v_{j, n-1}$ to $v_{j, n}$. Thus $j=n-1$ or $j=n$ since, for $j<n-1, s_{j}$ cannot be located at $v_{j, n-1}$ at step $t^{\prime}-1$. Since edges $\left(v_{n-1, n-1}, v_{n-2, n-1}\right)$ and $\left(v_{n-1, n-1}, v_{n-1, n}\right)$ are both dirty at step $t^{\prime}-1$, we note that $j \neq n-1$ (otherwise, edges of C_{1} are recontaminated). Therefore, at step t^{\prime}, s_{n} must move from $v_{n, n-1}$ to $v_{n, n}$, and R_{n} is clear at the end of step t^{\prime}. This implies that at the end of step $t^{\prime}-1$, searcher s_{j} must be located at $v_{j, j}$, for $2 \leq j \leq n-1$ (otherwise, edges of C_{1} are recontaminated). Recall that $\left(v_{j, j}, v_{j-1, j}\right),\left(v_{j, j}, v_{j, j+1}\right)$ are both dirty for $j \in\{2,3, \ldots, n-1\}$ at the end of step $t^{\prime}-1$ (and therefore t^{\prime}). So none of $s_{2}, s_{3}, \ldots, s_{n}$ can move at step $t^{\prime}+1$ without recontamination of some edges of C_{1}.

Note that s_{n} could move from $v_{n, n}$ to $v_{n-1, n}$ at step $t^{\prime}+1$ (or $t^{\prime}+2$). However, this results in s_{n} becoming incident with two dirty edges $\left(v_{n-1, n-1}, v_{n-1, n}\right)$, $\left(v_{n-2, n}, v_{n-1, n}\right)$. If s_{1} is located at $v_{1,1}$, then s_{1} can now move to $v_{1,2}$ at step $t^{\prime}+1$ (or $t^{\prime}+2$). However, this results in s_{1} being incident with two dirty edges and consequently, all searchers are incident with at least two dirty edges. So no searcher can move after step $t^{\prime}+2$ without recontaminating C_{1}.

Therefore, $s\left(P_{n} \square P_{n}\right) \geq n+1$.
Lemma 2.2. For $n \geq 3$ and a connected finite graph G, $s\left(G \square P_{n}\right) \leq \mid V(G \mid+1$.
Proof. Let G be a connected finite graph and label the vertex set of $G \square P_{n}$ as
$v_{i, j}$, for $1 \leq i \leq|V(G)|$ and $1 \leq j \leq n$. Place one searcher on each vertex of $\left\{v_{i, 1}: 1 \leq i \leq|V(G)|\right\}$; we will refer to these searchers as "the first $|V(G)|$ searchers". The $|V(G)|+1^{\text {th }}$ searcher clears the edges of the subgraph induced by $\left\{v_{i, 1}: 1 \leq i \leq|V(G)|\right\}$. Then the first $|V(G)|$ searchers move from $v_{i, 1}$ to $v_{i, 2}$ for each $1 \leq i \leq|V(G)|$ and the $|V(G)|+1^{t h}$ searcher clears the edges of the subgraph induced by $\left\{v_{i, 2}: 1 \leq i \leq|V(G)|\right\}$. Continuing in this manner, we find $|V(G)|+1$ searchers sufficient to clear $G \square K_{n}$.

In [21], it was observed that if H is a minor of G, then $s(G) \geq s(H)$. Since K_{m} is a minor of $K_{m} \square P_{n}$, we observe $s\left(K_{m} \square P_{n}\right) \geq s\left(K_{m}\right)=m+1$. Let $\alpha=\min \{m, n\}$. As $P_{\alpha} \square P_{\alpha}$ is a minor of $P_{m} \square P_{n}$, we observe $s\left(P_{m} \square P_{n}\right) \geq s\left(P_{\alpha} \square P_{\alpha}\right)=\alpha+1=$ $\min \{m, n\}+1$ by Lemma 2.1. Applying Lemma 2.2 to achieve the upper bounds, the following theorem is immediate.

Theorem 2.3. For $m, n \geq 3, s\left(P_{m} \square P_{n}\right)=\min \{m, n\}+1$ and $s\left(K_{m} \square P_{n}\right)=$ $m+1$.

3. Pathwidth of the Product of Cliques

With respect to the search number of products of cliques, it was shown in [21] that $s\left(K_{n} \square K_{2}\right)=n+1$ for $n \geq 3$ and that, for $n \geq 1, m \geq 2$,

$$
\begin{equation*}
s\left(K_{m} \square K_{n}\right) \leq n(m-1)+1 \tag{3.1}
\end{equation*}
$$

In this section, we improve the above bound by a factor of a half. To do this, we consider the pathwidth of $K_{m} \square K_{n}$. Robertson and Seymour introduced the concepts of pathwidth [16] and treewidth [17] which played a fundamental role in their work on graph minors. Pathwidth is of interest to researchers because many intractable problems can be solved efficiently on graphs of bounded pathwidth.

Let $\omega(G), \omega(H)$ denote the clique numbers of G, H, respectively. It was shown in [21] that $s(G) \geq s(H)$ when H is a minor of G; thus the following corollary is immediate.

Corollary 3.1. For any graphs G and H,
(a) $s(G \square H) \geq \max \left\{s\left(G \square K_{\omega(H)}\right), s\left(H \square K_{\omega(G)}\right)\right\}$, and
(b) $s(G \square H) \geq s\left(K_{\omega(G)} \square K_{\omega(H)}\right)$.

Corollary 3.1 with Inequality (1.1) yields the following relationship with pathwidth.

Lemma 3.2.

(a) For any graphs G and $H, s(G \square H) \geq p w\left(K_{\omega(G)} \square K_{\omega(H)}\right)$.
(b) For $n \geq 1, m \geq 2$, $p w\left(K_{m} \square K_{n}\right) \leq s\left(K_{m} \square K_{n}\right) \leq p w\left(K_{m} \square K_{n}\right)+2$.

For Lemma 3.2(a) to be useful, $p w\left(K_{\omega(G)} \square K_{\omega(H)}\right)$ must be known. The remainder of this section is devoted to proving that for $n \geq m \geq 2$,

$$
p w\left(K_{m} \square K_{n}\right)= \begin{cases}\frac{m}{2} n+\frac{m}{2}-1 & \text { if } m \text { even } \\ \left\lceil\frac{m}{2}\right\rceil n-1 & \text { if } m \text { odd. }\end{cases}
$$

We first note that the treewidth of the product of two cliques of order $n \geq 3$ was determined in [13]: $t w\left(K_{n} \square K_{n}\right)=\frac{n^{2}}{2}+\frac{n}{2}-1$. As treewidth forms a lower bound for pathwidth, the result of [13] provides a lower bound for $p w\left(K_{n} \square K_{n}\right)$, for $n \geq 3$. Seymour and Thomas [19] showed that construction of a bramble of size k proves $t w(G) \geq k-1$ and, to determine the lower bound for $t w\left(K_{n} \square K_{n}\right)$, Lucena [13] constructed a bramble of order $\frac{n^{2}}{2}+\frac{n}{2}$. Although it seems a generalization of the bramble construction in [13] could be used to obtain a lower bound for $t w\left(K_{m} \square K_{n}\right)$, this would still only yield a lower bound for $p w\left(K_{m} \square K_{n}\right)$. Instead, we consider a direct approach to providing a lower bound for $p w\left(K_{m} \square K_{n}\right)$, without introducing brambles. In Section 3.2, we prove the upper bound for $p w\left(K_{m} \square K_{n}\right)$ and in Section 3.3 , we state conclusions and implications of the upper and lower bounds.

The following notation is used in the remainder of this section: label the vertex set of $K_{m} \square K_{n}$ as $v_{i, j}$ for $1 \leq i \leq m, 1 \leq j \leq n$. For any $i \in[m]$, the subgraph of $K_{m} \square K_{n}$ induced by vertices $\left\{v_{1, i}, v_{2, i}, \ldots, v_{m, i}\right\}$ is called an m-clique as it is a subgraph isomorphic to K_{m}. Similarly, for any $j \in[n]$, the subgraph of $K_{m} \square K_{n}$ induced by vertices $\left\{v_{j, 1}, v_{j, 2}, \ldots, v_{j, n}\right\}$ is called an n-clique.

3.1. Lower Bound for the Pathwidth of the Product of Cliques

Lemma 3.3. For $n \geq 2, p w\left(K_{2} \square K_{n}\right) \geq n$.
Proof. For a contradiction, suppose $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ is a path decomposition where $\max _{1 \leq i \leq r}\left|B_{i}\right| \leq n$ for some $n \geq 2$. By Lemma 1.3, there exists $i \in[r], j \in[r]$ such that bag B_{i} contains the n-clique $\left\{v_{1,1}, v_{1,2}, \ldots, v_{1, n}\right\}$ and B_{j} contains the n-clique $\left\{v_{2,1}, v_{2,2}, \ldots, v_{2, n}\right\}$. Certainly, $i \neq j$ (else $\left|B_{i}\right| \geq 2 n$), so wlog assume $i<j$.

Let B_{x} be the lowest-indexed bag that contains a pair of vertices of the form $v_{1, \alpha}, v_{2, \alpha}$, for any $\alpha \in[n]$. Clearly $i<x<j$ (else one of B_{i}, B_{j} contains $n+1$ vertices). As B_{x} contains at most $n-2$ vertices other than $v_{1, \alpha}, v_{2, \alpha}$, we observe $v_{1, \beta} \notin B_{x}$, for some $\beta \in[n]$. Therefore, the pair $v_{1, \beta}, v_{2, \beta}$ must appear together in a bag with higher index than B_{x} (by Definition 1.1(ii), $v_{1, \beta}, v_{2, \beta}$ must appear in some bag together). But then we do not have a path decomposition as the set of bags containing $v_{1, \beta}$ does not form a bag-path: $v_{1, \beta} \in B_{i}, v_{1, \beta} \notin B_{x}$, and $v_{i, \beta}$ is in a bag with higher index than B_{x}.

We next prove a simple, but useful, lemma.
Lemma 3.4. Let S be a set containing $m \geq 3$ elements. Consider an ordered partition of S into at least three non-empty subsets, each of which contains strictly fewer than $\left\lceil\frac{m}{2}\right\rceil$ elements, and label the subsets of the ordered partition $S_{1}, S_{2}, \ldots, S_{r}$, for
some integer $r \geq 3$. Then, for some $t \in \mathbb{N}$,
$1 \leq\left|S_{1} \cup S_{2} \cup \ldots S_{t-1}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq\left|S_{t}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq\left|S_{t+1} \cup S_{t+2} \cup \ldots S_{r}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$.

Proof. Let t be the smallest integer for which $\left|S_{1} \cup S_{2} \cup \cdots \cup S_{t}\right|>\left\lfloor\frac{m}{2}\right\rfloor$. Then $1 \leq\left|S_{1} \cup S_{2} \cup \cdots \cup S_{t-1}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$. By the hypothesis, $1 \leq\left|S_{t}\right|<\left\lceil\frac{m}{2}\right\rceil$. As a result, $1 \leq\left|S_{t}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$ as desired.

As $\left|S_{1} \cup S_{2} \cup \cdots \cup S_{t}\right|>\left\lfloor\frac{m}{2}\right\rfloor$, we know $\left|S_{t+1} \cup S_{t+2} \cup \cdots \cup S_{r}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$. It remains to show that $1 \leq\left|S_{t+1} \cup S_{t+2} \cup \cdots \cup S_{r}\right|$. If m is even, then $\left|S_{t}\right| \leq \frac{m}{2}-1<\left\lceil\frac{m}{2}\right\rceil$, so $\left|S_{1} \cup S_{2} \cup \cdots \cup S_{t}\right| \leq \frac{m}{2}+\frac{m}{2}-1<m$. If m is odd, then $\left|S_{t}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$, so $\left|S_{1} \cup S_{2} \cup \cdots \cup S_{t}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor<m$. Thus, $1 \leq\left|S_{t+1} \cup S_{t+2} \cup \cdots \cup S_{r}\right|$.

In the remaining 2 proofs of this subsection, we will repeatedly apply the result of Lemma 1.3 to observe that in a path decomposition, every n-clique (and m-clique) must be contained in some bag.

Theorem 3.5. For $n \geq m \geq 4$, $p w\left(K_{m} \square K_{n}\right) \geq\left\lceil\frac{m}{2}\right\rceil n-1$.
Proof. For a contradiction, suppose $\left(B_{1}, \ldots, B_{r}\right)$ is a path decomposition where $\max _{1 \leq i \leq r}\left|B_{i}\right| \leq\left\lceil\frac{m}{2}\right\rceil n-1$. Let S be the set of $m n$-cliques in $K_{m} \square K_{n}$. Bags $B_{1}, B_{2}, \ldots, B_{r}$ form an ordered partition of S into non-empty subsets, each bag containing fewer than $\left\lceil\frac{m}{2}\right\rceil n$-cliques (as each bag contains at most $\left\lceil\frac{m}{2}\right\rceil n-1$ vertices). By Lemma 3.4, $X=B_{1} \cup B_{2} \cup \cdots \cup B_{t-1}$ contains $i n$-cliques, for some $i \in\left[\left\lfloor\frac{m}{2}\right\rfloor\right]$, $B=B_{t}$ contains $j n$-cliques, for some $j \in\left[\left\lfloor\frac{m}{2}\right\rfloor\right]$, and $Y=B_{t+1} \cup B_{t+2} \cup \cdots \cup B_{r}$ contains $k n$-cliques, for some $k \in\left[\left\lfloor\frac{m}{2}\right\rfloor\right]$.

Suppose wlog that $i \geq k$ and pair each n-clique in Y with a distinct n-clique in X. For instance, if $\left\{v_{b, 1}, v_{b, 2}, \ldots, v_{b, n}\right\}$ is an n-clique in Y, it is paired with some n-clique $\left\{v_{a, 1}, v_{a, 2}, \ldots, v_{a, n}\right\}$ in X. Every bag on the bag-path between X and Y must contain at least one of $v_{a, \ell}, v_{b, \ell}$ for each $\ell \in[n]$ (otherwise we contradict Fact 1.2 (or equivalently Definition $1.1(\mathrm{iii}))$). Since there are k pairings, there are at least $k n$ vertices in B in addition to the $j n$ vertices from the $j n$-cliques in B. So, $|B| \geq(j+k) n=(m-i) n$ as $i+j+k=m$ (the number of n-cliques). Note that $(m-i) n \leq|B| \leq\left\lceil\frac{m}{2}\right\rceil n-1$ (the upper bound being the initial hypothesis) implies $i>\left\lfloor\frac{m}{2}\right\rfloor$, which contradicts the fact that $i \in\left[\left\lfloor\frac{m}{2}\right\rfloor\right]$. Therefore, B contains at least $\left\lceil\frac{m}{2}\right\rceil n$ vertices and $p w\left(K_{m} \square K_{n}\right) \geq\left\lceil\frac{m}{2}\right\rceil n-1$.

Given a minimum width path decomposition $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ of graph G, the length of the decomposition is r. The next result will be used to increase the lower bound of $p w\left(K_{m} \square K_{n}\right)$ for m even.
Lemma 3.6. For even m and $n \geq m \geq 4$, suppose $p w\left(K_{m} \square K_{n}\right) \leq \frac{m}{2} n+\frac{m}{2}-2$ and of the path decompositions of minimum width, let $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ be a decomposition of minimum length. Then for each $i \in[r], B_{i}$ contains fewer than $\frac{m}{2}$ n-cliques.
Proof. For m even and $n \geq m \geq 4$, let $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ be a minimum length path decomposition for which $\max _{1 \leq i \leq r}\left|B_{i}\right| \leq \frac{m}{2} n+\frac{m}{2}-1$. We first observe that
every bag in the decomposition contains at most $\frac{m}{2} n$-cliques; otherwise, some bag contains at least $\left(\frac{m}{2}+1\right) n=\frac{m}{2} n+n \geq \frac{m}{2} n+m>\frac{m}{2} n+\frac{m}{2}-1$ vertices, which yields a contradiction.

Next, assume that for some $j \in[r]$, bag B_{j} contains exactly $\frac{m}{2} n$-cliques. First, suppose there exists $i<j<k$ such that bags B_{i}, B_{k} each contain at least one n-clique that does not appear in B_{j}. Let $\left\{v_{\alpha, 1}, v_{\alpha, 2}, \ldots, v_{\alpha, n}\right\}$ be such an n-clique in B_{i} and $\left\{v_{\beta, 1}, v_{\beta, 2}, \ldots, v_{\beta, n}\right\}$ such an n-clique in B_{k}. Then, for each pair $v_{\alpha, s}, v_{\beta, s}$ with $s \in[n]$, at least one vertex of the pair must be in B_{j} (else we contradict Definition 1.1(ii) and (iii)). Then $\left|B_{j}\right| \geq \frac{m}{2} n+n>\frac{m}{2} n+\frac{m}{2}-1$ which yields a contradiction.

Thus, wlog no bag of lower index than j contains an n-clique not already contained in B_{j}. However, then no bag of lower index than j contains an m-clique not already contained in B_{j}. Otherwise, for some $x<j, B_{x}$ contains an m-clique and each of these m vertices must appear in a bag as part of its associated n-clique. Thus, each of the m vertices (of the m-clique of B_{x}) must appear in B_{j}. Since exactly $\frac{m}{2}$ of them already appear in B_{j} in an n-clique, this means $\left|B_{j}\right| \geq \frac{m}{2} n+\frac{m}{2}$, which yields a contradiction.

Thus B_{j} contains $\frac{m}{2} n$-cliques, and no lower-indexed bag contains an n-clique or an m-clique. As each vertex must appear in a bag with its associated m-clique, every vertex in B_{j} must appear in B_{j+1}. We now have a contradiction as the minimum width decomposition is not of minimum length. Consequently, every bag in the decomposition contains strictly fewer than $\frac{m}{2} n$-cliques.
Theorem 3.7. For $n \geq m \geq 4$ and m even, $p w\left(K_{m} \square K_{n}\right) \geq \frac{m}{2} n+\frac{m}{2}-1$.
Proof. Suppose $n \geq m \geq 4$ and m is even. For a contradiction, let $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ be a minimum length path decomposition for which $\max _{1 \leq i \leq r}\left|B_{i}\right| \leq \frac{m}{2} n+\frac{m}{2}-1$. As a result of Lemma 3.6, we can apply Lemma 3.4; let S be the set of $m n$-cliques in $K_{m} \square K_{n}$. Let $X=B_{1} \cup B_{2} \cup \cdots \cup B_{t-1}$ contain $i n$-cliques for some $i \in\left[\frac{m}{2}\right]$, $B=B_{t}$ contain $j n$-cliques for some $j \in\left[\frac{m}{2}\right]$, and $Y=B_{t+1} \cup B_{t+2} \cup \cdots \cup B_{r}$ contain $k n$-cliques for some $k \in\left[\frac{m}{2}\right]$.

We now show that X and Y each must contain at least one m-clique that does not appear in B. To see this, suppose that X contains no m-clique: all m-cliques appear in $B \cup Y$. As each vertex must appear in a bag with its associated m-clique, it is clear that any vertex of X must also appear in B (else we contradict Definition 1.1(iii)). Then X is unnecessary in the path decomposition, which contradicts the assumption of having a minimum width path decomposition that is of minimum length. Clearly the same argument ensures X does not contain all the m-cliques. Consequently, X, Y each contain at least one m-clique.

Suppose wlog that $i \geq k$. We pair the $k n$-cliques in Y with $k n$-cliques in X. If $\left\{v_{a, 1}, v_{a, 2}, \ldots, v_{a, n}\right\}$ in X is paired with $\left\{v_{b, 1}, v_{b, 2}, \ldots, v_{b, n}\right\}$ in Y, then B must contain at least one of $v_{a, \ell}, v_{b, \ell}$, for each $\ell \in[n]$ (else we contradict Definition 1.1(iii)). Thus, $|B| \geq(j+k) n$.

Recall that X, Y must each contain at least one m-clique that does not appear in B; let $\left\{v_{1, x}, v_{2, x}, \ldots, v_{m, x}\right\}$ be such an m-clique in X and $\left\{v_{1, y}, v_{2, y}, \ldots, v_{m, y}\right\}$
such an m-clique in Y. At least one vertex from each pair $v_{\ell, x}, v_{\ell, y}$, for $\ell \in[m]$, must appear in B, and at most $j+k$ of these m vertices already appear in B. This leaves an additional $m-(j+k)=i$ vertices. Thus, $|B| \geq(j+k) n+i=$ $(m-i) n+i=m n-i n+i \geq \frac{m}{2} n+\frac{m}{2}$, as $1 \leq i \leq \frac{m}{2}$. However, this contradicts the initial assumption $p w\left(K_{m} \square K_{n}\right) \leq \frac{m}{2} n+\frac{m}{2}-2$.

3.2. Upper Bound for the Pathwidth of the Product of Cliques

We now provide upper bounds for the pathwidth of the product of cliques. Theorem 3.8 provides a general upper bound and Theorem 3.9 provides an improved upper bound for odd m. To illustrate the decomposition used in Theorem 3.8, we refer the reader to Figure 1, in which the bags B_{1}, B_{2}, B_{3}, and B_{n} are illustrated. We note that for simplicity, the edges of $K_{m} \square K_{n}$ have been omitted in Figures 1, 2, and 3 .

Figure 1: An illustration highlighting bags B_{1}, B_{2}, B_{3}, and B_{n}, following the decomposition of Theorem 3.8.

Theorem 3.8. For $n \geq m \geq 2, p w\left(K_{m} \square K_{n}\right) \leq\left\lceil\frac{m}{2}\right\rceil n+\left\lfloor\frac{m}{2}\right\rfloor-1$.
Proof. For $k \in[n]$, let $B_{k}=\bigcup_{i=1}^{\lfloor m / 2\rfloor}\left\{v_{i, k}, v_{i, k+1}, \ldots, v_{i, n}\right\} \cup \bigcup_{i=\lfloor m / 2\rfloor+1}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, k}\right\}$.
Observe that each bag B_{k} contains at most $\left\lceil\frac{m}{2}\right\rceil n+\left\lfloor\frac{m}{2}\right\rfloor$ vertices. We now verify that $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ is a path decomposition (see Definition 1.1). Consider arbitrary vertex $v_{x, y} \in V\left(K_{m} \square K_{n}\right)$. Clearly $v_{x, y} \in B_{y}$, so $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ satisfies condition (i) of Definition 1.1.

Let $v_{s, t}$ be a vertex adjacent to $v_{x, y}$. From the definition of the Cartesian product, either $s=x$ or $t=y$. If $t=y$ then obviously $v_{s, t} \in B_{y}$. Wlog $y<t$. If $s=x \geq\left\lfloor\frac{m}{2}\right\rfloor+1$, then

$$
v_{s, t} \in \bigcup_{i=\left\lfloor\frac{m}{2}\right\rfloor+1}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, y}\right\} \subseteq B_{y} .
$$

If $s=x \leq\left\lfloor\frac{m}{2}\right\rfloor$, then

$$
v_{s, t} \in \bigcup_{i=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i, y}, v_{i, y+1}, \ldots, v_{i, n}\right\} \subseteq B_{y}
$$

Thus, $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ satisfies condition (ii) of Definition 1.1.
To verify condition (iii) of Definition 1.1, we assume $v_{x, y} \in B_{p}, v_{x, y} \notin B_{q}$, and $v_{x, y} \in B_{r}$, for $1 \leq p<q<r \leq n$, and seek a contradiction. If $x \geq\left\lfloor\frac{m}{2}\right\rfloor+1$, then because $p<q$,

$$
v_{x, y} \in \bigcup_{i=\left\lfloor\frac{m}{2}\right\rfloor}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, p}\right\} \subseteq B_{p} \Rightarrow v_{x, y} \in \bigcup_{i=\left\lfloor\frac{m}{2}\right\rfloor}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, q}\right\} \subseteq B_{q}
$$

If $x \leq\left\lfloor\frac{m}{2}\right\rfloor$, then because $q<r$,

$$
v_{x, y} \in \bigcup_{i=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i, r}, v_{i, r+1}, \ldots, v_{i, n}\right\} \subseteq B_{r} \Rightarrow v_{x, y} \in \bigcup_{i=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i, q}, v_{i, q+1}, \ldots, v_{i, n}\right\} \subseteq B_{q}
$$

Therefore, $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ satisfies condition (iii) of Definition 1.1.
The final result of this subsection improves the upper bound for odd m, but the bags are not all formed in the same way. The bags are described by (3.2)(3.4) in Theorem 3.9, but we illustrate the formation of the bags in Figures 2 and 3. For $k \in\left\{1, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}, B_{k}$ is described by (3.2) and B_{1}, B_{2}, B_{3} and $B_{\left\lceil\frac{n}{2}\right\rceil}$ are highlighted by different shades of grey in Figure 2. For $k \in\left\{\left\lceil\frac{n}{2}\right\rceil+1, \ldots\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor\right\}$, B_{k} is described by (3.3) and for $k=\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil, B_{k}$ is described by (3.4). Bags $B_{\left\lceil\frac{n}{2}\right\rceil+1}, B_{\left\lceil\frac{n}{2}\right\rceil+2}$, and $B_{\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor}$ are highlighted (in dark, medium, and light grey, respectively) in Figure 3, while $B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}$ is indicated with a dotted line.

Theorem 3.9. For $n \geq m \geq 3$ and m odd, $p w\left(K_{m} \square K_{n}\right) \leq\left\lceil\frac{m}{2}\right\rceil n-1$.
Proof. For $1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, let

$$
\begin{equation*}
B_{k}=\bigcup_{i=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i, k}, v_{i, k+1}, \ldots, v_{i, n}\right\} \cup \bigcup_{i=\left\lceil\frac{m}{2}\right\rceil}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, k}\right\} \tag{3.2}
\end{equation*}
$$

Figure 2: An illustration highlighting some bags described by (3.2) following the decomposition of Theorem 3.9.
for $\left\lceil\frac{n}{2}\right\rceil+1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor$, let

$$
\begin{equation*}
B_{k}=\bigcup_{i=k-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{k-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} \tag{3.3}
\end{equation*}
$$

and, for $k=\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$, let

$$
\begin{equation*}
B_{k}=\left\{v_{m, 1}, v_{m, 2}, \ldots, v_{m,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{m}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} \tag{3.4}
\end{equation*}
$$

We now verify that $\left(B_{1}, B_{2}, \ldots, B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}\right)$ is a path decomposition. Consider an arbitrary vertex $v_{x, y} \in V\left(K_{m} \square K_{n}\right)$. If $1 \leq y \leq\left\lceil\frac{n}{2}\right\rceil$ then from (3.2), $v_{x, y} \in B_{y}$. If $\left\lceil\frac{n}{2}\right\rceil+1 \leq y \leq n$ then from $(3.4), v_{x, y} \in B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}$. Thus, $\left(B_{1}, B_{2}, \ldots, B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}\right)$ satisfies condition (i) of Definition 1.1.

Let $v_{s, t}$ be a vertex adjacent to $v_{x, y}$. From the definition of the Cartesian product, either $s=x$ or $t=y$. First, suppose $t=y$ and wlog $s<x$. If $1 \leq y \leq\left\lceil\frac{n}{2}\right\rceil$ then from (3.2), $v_{s, t}, v_{x, y}$ are both in B_{y}. If $\left\lceil\frac{n}{2}\right\rceil+1 \leq y \leq n$, then $v_{s, y}, v_{x, y}$ are both in $B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}$. Second, suppose $s=x$ and wlog $t<y$. We consider the possible cases:
(i) Assume $x=m$. Then clearly $v_{x, y}, v_{s, t}$ are both in $B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}$ by (3.4).

Figure 3: An illustration highlighting some bags described by (3.3) and (3.4) following the decomposition of Theorem 3.9.
(ii) Assume $\left\lfloor\frac{m}{2}\right\rfloor \leq x<m$. Then $v_{x, y}, v_{s, t}$ are both in $B_{x+\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor}$ by (3.3).
(iii) Assume $1 \leq x \leq\left\lfloor\frac{m}{2}\right\rfloor-1$. If $1 \leq t \leq\left\lceil\frac{n}{2}\right\rceil$, then $v_{x, y}, v_{s, t}$ are both in B_{t} by (3.2). If $t>\left\lceil\frac{n}{2}\right\rceil$ then $v_{x, y}, v_{s, t}$ are both in $B_{\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil}$ by (3.4).
Therefore, $\left(B_{1}, B_{2}, \ldots, B_{\left[\frac{n}{2}\right]+\left[\frac{m}{2}\right]}\right)$ satisfies condition (ii) of Definition 1.1.
To verify condition (iii) of the definition, we assume $v_{x, y} \in B_{p}, v_{x, y} \notin B_{p+1}$, and $v_{x, y} \in B_{r}$, for $1 \leq p<p+1<r \leq n$, and seek a contradiction.
(a) Suppose $1 \leq p<p+1 \leq\left\lceil\frac{n}{2}\right\rceil$. Then by (3.2),

$$
B_{p} \backslash B_{p+1}=\left\{v_{1, p}, v_{2, p}, \ldots, v_{\left\lfloor\frac{m}{2}\right\rfloor, p}\right\} .
$$

If $r \leq\left\lceil\frac{n}{2}\right\rceil$ then, by (3.2), clearly no vertex in the set $\left\{v_{1, p}, v_{2, p}, \ldots, v_{\left\lfloor\frac{m}{2}\right\rfloor, p}\right\}$ is in B_{r}. Thus, $r \geq\left\lceil\frac{n}{2}\right\rceil+1$. In this case, consider

$$
B_{\left\lceil\frac{n}{2}\right\rceil+1}=\bigcup_{i=\left\lceil\frac{m}{2}\right\rceil}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{\left\lceil\frac{m}{2}\right\rceil}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} .
$$

Clearly, for $1 \leq p<p+1 \leq\left\lceil\frac{n}{2}\right\rceil$, no vertex in the set $\left\{v_{1, p}, v_{2, p}, \ldots, v_{\left\lfloor\frac{m}{2}\right\rfloor, p}\right\}$ is in $B_{\left\lceil\frac{n}{2}\right\rceil+1}$.
(b) Suppose $1 \leq p \leq\left\lceil\frac{n}{2}\right\rceil<p+1 \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$. Then we may assume $p=\left\lceil\frac{n}{2}\right\rceil$ and $v_{x, y} \in B_{\left\lceil\frac{n}{2}\right\rceil}$, but $v_{x, y} \notin B_{\left\lceil\frac{n}{2}\right\rceil+1}$. In this case, using (3.2) and (3.3), we find

$$
B_{\left\lceil\frac{n}{2}\right\rceil} \backslash B_{\left\lceil\frac{n}{2}\right\rceil+1}=\left\{v_{1,\left\lceil\frac{n}{2}\right\rceil}, v_{2,\left\lceil\frac{n}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{m}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}\right\} .
$$

It suffices to consider $r=\left\lceil\frac{n}{2}\right\rceil+2$ to obtain a contradiction. If $m \geq 4$ then, from (3.3),

$$
B_{\left\lceil\frac{n}{2}\right\rceil+2}=\bigcup_{i=\left\lceil\frac{m}{2}\right\rceil+1}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{\left\lceil\frac{m}{2}\right\rceil+1}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\}
$$

and, if $m=3$, then from (3.4),

$$
B_{\left\lceil\frac{n}{2}\right\rceil+2}=\left\{v_{m, 1}, v_{m, 2}, \ldots, v_{m,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{m}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} .
$$

In either case, $\left(B_{\left\lceil\frac{n}{2}\right\rceil} \backslash B_{\left\lceil\frac{n}{2}\right\rceil+1}\right) \cap B_{\left\lceil\frac{n}{2}\right\rceil+2}=\emptyset$ and we have obtained a contradiction with $r=\left\lceil\frac{n}{2}\right\rceil+2$. Thus, if $1 \leq \frac{p}{p}\left\lceil\left\lceil\frac{n}{2}\right\rceil<q \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil\right.$, condition (iii) of Definition 1.1 is satisfied.
(c) Suppose $\left\lceil\frac{n}{2}\right\rceil+1 \leq p<p+1<r \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$. Then $v_{x, y} \in B_{p}$ and $v_{x, y} \notin B_{p+1}$ and by (3.4),

$$
B_{p} \backslash B_{p+1}=\left\{v_{p-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor, 1}, v_{p-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor, 2}, \ldots, v_{p-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}\right\} .
$$

However, $\left(B_{p} \backslash B_{p+1}\right) \cap B_{p+2}=\emptyset$; to see this, we explicitly state B_{p+2} below.
If $p+2<\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$ then, from (3.3),

$$
B_{p+2}=\bigcup_{i=p+2-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor}^{m}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup_{i=1}^{p+2-\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} .
$$

If $p+2=\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$ then, from (3.4),

$$
B_{p+2}=\left\{v_{m, 1}, v_{m, 2}, \ldots, v_{m,\left\lceil\frac{n}{2}\right\rceil}\right\} \cup \bigcup_{i=1}^{m}\left\{v_{i,\left\lceil\frac{n}{2}\right\rceil+1}, v_{i,\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{i, n}\right\} .
$$

As $p<\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil$, it is clear that no vertex of $B_{p} \backslash B_{p+1}$ appears in B_{p+2}. We have obtained a contradiction, using $r=p+2$. Thus, condition (iii) of Definition 1.1 is satisfied.

Therefore, $\left(B_{1}, B_{2}, \ldots, B_{\left\lceil\frac{n}{2}\right\rceil\left\lceil\left\lceil\frac{m}{2}\right\rceil\right.}\right)$ forms a path decomposition.
As $n \geq m \geq 3$, counting the number of vertices in B_{k} for (3.2), (3.3), and (3.4) finds $\left|B_{k}\right| \leq\left\lceil\frac{m}{2}\right\rceil$.

3.3. The Pathwidth of the Product of Cliques

The following corollary is immediate from Lemma 3.3 and Theorems 3.5, 3.73.9.

Corollary 3.10. For $n \geq m \geq 2$,

$$
p w\left(K_{m} \square K_{n}\right)= \begin{cases}\frac{m}{2} n+\frac{m}{2}-1 & \text { if } m \text { even } \\ \left\lceil\frac{m}{2}\right\rceil n-1 & \text { if } m \text { odd. }\end{cases}
$$

Our final results follow directly from Corollary 3.1(a), Lemma 3.2, and Corollary 3.10. Corollary 3.11 bounds the search number of the Cartesian product of cliques to within 2 and improves the bound of [21], given in Inequality (3.1), by half. Corollary 3.12 provides the lower bound for the search number of the product of two general graphs G and H.
Corollary 3.11. For $n \geq m \geq 2$, if m is even, then

$$
\frac{m}{2} n+\frac{m}{2}-1 \leq s\left(K_{m} \square K_{n}\right) \leq \frac{m}{2} n+\frac{m}{2}+1
$$

and, if m is odd, then

$$
\left\lceil\frac{m}{2}\right\rceil n-1 \leq s\left(K_{m} \square K_{n}\right) \leq\left\lceil\frac{m}{2}\right\rceil n+1 .
$$

Corollary 3.12. For $|V(H)| \geq|V(G)| \geq 4$, where the clique numbers of graphs G and H are m and n respectively,

$$
s(G \square H) \geq \begin{cases}\frac{m}{2} n+\frac{m}{2}-1 & \text { if } m \text { even } \\ \left\lceil\frac{m}{2}\right\rceil n-1 & \text { if } m \text { odd } .\end{cases}
$$

Acknowledgements. N. E. Clarke acknowledges research support from NSERC (grant application 2015-06258). M. E. Messinger acknowledges research support from NSERC (grant application 356119-2011). G. Power acknowledges research support from Mount Allison University and NSERC-USRA (2015).

References

[1] B. Alspach, Searching and sweeping graphs: a brief survey, Matematiche (Catania), 59(2004), 5-37.
[2] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209(1998), 1-45.
[3] H. L. Bodlaender, Dynamic programming algorithms on graphs with bounded treewidth, Proc. 15th Intemat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer Science 317, Springer, Berlin, (1988), 105-119.
[4] H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math., 6(1993), 181-188.
[5] D. Dyer, Sweeping graphs and digraphs, Ph.D. Thesis, Simon Fraser University, 2004.
[6] J. A. Ellis, I. H. Sudborough and J. Turner, The vertex separation and search number of a graph, Inform. Comput., 113(1994), 50-79.
[7] J. Ellis and R. Warren, Lower bounds on the pathwidth of some grid-like graphs, Discrete Appl. Math., 156(2008), 545-555.
[8] M. Fellows and M. Langston, On search, decision and the efficiency of polynomial time algorithms, J. Comput. System Sci., 49(1994), 769-779.
[9] M. Frankling, Z. Galil and M. Yung, Eavesdropping games: a graph theoretic approach to privacy in distributed systems, J. ACM, 47(2000), 225-243.
[10] P. Heggernes and R. Mihai, Edge search number of cographs in linear time, Front. Algorithmics, Lecture Notes in Computer Science, 5598(2009), 16-26.
[11] N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett., 42(1992), 345-350.
[12] L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci., 47(2)(1986), 205-218.
[13] B. Lucena, Achievable sets, brambles, and sparse treewidth obstructions, Disc. Appl. Math., 155(2007), 1055-1065.
[14] N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadimitriou, The complexity of searching a graph, J. Assoc. Ccomp. Mach., 35(1988), 18-44.
[15] M.E. Messinger, R. Nowakowski and P. Prałat, Cleaning a network with brushes, Theoret. Comput. Sci., 399(2008), 191-205.
[16] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B, 35(1983), 39-61.
[17] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7(1986), 309-322.
[18] P. Scheffler, Die Baumweite von Graphen als ein Maß für die Kompliziertheit algorithmischer Probleme, Ph.D. Thesis, Akademie der Wissenschafien der DDR, Berlin, 1989.
[19] P. D. Seymour and R. Thomas, Graph searching and a mini-max theorem for treewidth, J. Combin. Theory Ser. B, 58(1993), 22-33.
[20] R. Tos̆ić, Search number of the cartesian product of graphs, Univ. Novom Sabu Zb. Rad. Prirod.-Mat Fak. Ser. Mat., 17(1987), 239-243.
[21] B. Yang, D. Dyer and B. Alspach, Sweeping graphs with large clique number, Discrete Math., 309(2009), 5770-5780.

