Figure 1: An illustration highlighting bags B1, B2, B3, and Bn, following the decomposition of Theorem 3.8.
Figure 2: An illustration highlighting some bags described by (3.2) following the decomposition of Theorem 3.9.
Figure 3: An illustration highlighting some bags described by (3.3) and (3.4) following the decomposition of Theorem 3.9.
References
- B. Alspach, Searching and sweeping graphs: a brief survey, Matematiche (Catania), 59(2004), 5-37.
- H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209(1998), 1-45. https://doi.org/10.1016/S0304-3975(97)00228-4
- H. L. Bodlaender, Dynamic programming algorithms on graphs with bounded treewidth, Proc. 15th Intemat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer Science 317, Springer, Berlin, (1988), 105-119.
- H. L. Bodlaender and R. H. Mohring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math., 6(1993), 181-188. https://doi.org/10.1137/0406014
- D. Dyer, Sweeping graphs and digraphs, Ph.D. Thesis, Simon Fraser University, 2004.
- J. A. Ellis, I. H. Sudborough and J. Turner, The vertex separation and search number of a graph, Inform. Comput., 113(1994), 50-79. https://doi.org/10.1006/inco.1994.1064
- J. Ellis and R. Warren, Lower bounds on the pathwidth of some grid-like graphs, Discrete Appl. Math., 156(2008), 545-555. https://doi.org/10.1016/j.dam.2007.02.006
- M. Fellows and M. Langston, On search, decision and the efficiency of polynomial time algorithms, J. Comput. System Sci., 49(1994), 769-779. https://doi.org/10.1016/S0022-0000(05)80079-0
- M. Frankling, Z. Galil and M. Yung, Eavesdropping games: a graph theoretic approach to privacy in distributed systems, J. ACM, 47(2000), 225-243. https://doi.org/10.1145/333979.333980
- P. Heggernes and R. Mihai, Edge search number of cographs in linear time, Front. Algorithmics, Lecture Notes in Computer Science, 5598(2009), 16-26.
- N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett., 42(1992), 345-350. https://doi.org/10.1016/0020-0190(92)90234-M
- L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci., 47(2)(1986), 205-218. https://doi.org/10.1016/0304-3975(86)90146-5
- B. Lucena, Achievable sets, brambles, and sparse treewidth obstructions, Disc. Appl. Math., 155(2007), 1055-1065. https://doi.org/10.1016/j.dam.2006.11.006
- N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadimitriou, The complexity of searching a graph, J. Assoc. Ccomp. Mach., 35(1988), 18-44. https://doi.org/10.1145/42267.42268
- M.E. Messinger, R. Nowakowski and P. Pralat, Cleaning a network with brushes, Theoret. Comput. Sci., 399(2008), 191-205. https://doi.org/10.1016/j.tcs.2008.02.037
- N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B, 35(1983), 39-61. https://doi.org/10.1016/0095-8956(83)90079-5
- N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7(1986), 309-322. https://doi.org/10.1016/0196-6774(86)90023-4
- P. Scheffler, Die Baumweite von Graphen als ein Mass fur die Kompliziertheit algorithmischer Probleme, Ph.D. Thesis, Akademie der Wissenschafien der DDR, Berlin, 1989.
- P. D. Seymour and R. Thomas, Graph searching and a mini-max theorem for treewidth, J. Combin. Theory Ser. B, 58(1993), 22-33. https://doi.org/10.1006/jctb.1993.1027
- R. Tosic, Search number of the cartesian product of graphs, Univ. Novom Sabu Zb. Rad. Prirod.-Mat Fak. Ser. Mat., 17(1987), 239-243.
- B. Yang, D. Dyer and B. Alspach, Sweeping graphs with large clique number, Discrete Math., 309(2009), 5770-5780. https://doi.org/10.1016/j.disc.2008.05.033