DOI QR코드

DOI QR Code

Bounding the Search Number of Graph Products

  • Received : 2017.02.18
  • Accepted : 2018.07.04
  • Published : 2019.03.23

Abstract

In this paper, we provide results for the search number of the Cartesian product of graphs. We consider graphs on opposing ends of the spectrum: paths and cliques. Our main result determines the pathwidth of the product of cliques and provides a lower bound for the search number of the product of cliques. A consequence of this result is a bound for the search number of the product of arbitrary graphs G and H based on their respective clique numbers.

Keywords

GBDHBF_2019_v59n1_175_f0001.png 이미지

Figure 1: An illustration highlighting bags B1, B2, B3, and Bn, following the decomposition of Theorem 3.8.

GBDHBF_2019_v59n1_175_f0002.png 이미지

Figure 2: An illustration highlighting some bags described by (3.2) following the decomposition of Theorem 3.9.

GBDHBF_2019_v59n1_175_f0003.png 이미지

Figure 3: An illustration highlighting some bags described by (3.3) and (3.4) following the decomposition of Theorem 3.9.

References

  1. B. Alspach, Searching and sweeping graphs: a brief survey, Matematiche (Catania), 59(2004), 5-37.
  2. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209(1998), 1-45. https://doi.org/10.1016/S0304-3975(97)00228-4
  3. H. L. Bodlaender, Dynamic programming algorithms on graphs with bounded treewidth, Proc. 15th Intemat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer Science 317, Springer, Berlin, (1988), 105-119.
  4. H. L. Bodlaender and R. H. Mohring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math., 6(1993), 181-188. https://doi.org/10.1137/0406014
  5. D. Dyer, Sweeping graphs and digraphs, Ph.D. Thesis, Simon Fraser University, 2004.
  6. J. A. Ellis, I. H. Sudborough and J. Turner, The vertex separation and search number of a graph, Inform. Comput., 113(1994), 50-79. https://doi.org/10.1006/inco.1994.1064
  7. J. Ellis and R. Warren, Lower bounds on the pathwidth of some grid-like graphs, Discrete Appl. Math., 156(2008), 545-555. https://doi.org/10.1016/j.dam.2007.02.006
  8. M. Fellows and M. Langston, On search, decision and the efficiency of polynomial time algorithms, J. Comput. System Sci., 49(1994), 769-779. https://doi.org/10.1016/S0022-0000(05)80079-0
  9. M. Frankling, Z. Galil and M. Yung, Eavesdropping games: a graph theoretic approach to privacy in distributed systems, J. ACM, 47(2000), 225-243. https://doi.org/10.1145/333979.333980
  10. P. Heggernes and R. Mihai, Edge search number of cographs in linear time, Front. Algorithmics, Lecture Notes in Computer Science, 5598(2009), 16-26.
  11. N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett., 42(1992), 345-350. https://doi.org/10.1016/0020-0190(92)90234-M
  12. L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci., 47(2)(1986), 205-218. https://doi.org/10.1016/0304-3975(86)90146-5
  13. B. Lucena, Achievable sets, brambles, and sparse treewidth obstructions, Disc. Appl. Math., 155(2007), 1055-1065. https://doi.org/10.1016/j.dam.2006.11.006
  14. N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadimitriou, The complexity of searching a graph, J. Assoc. Ccomp. Mach., 35(1988), 18-44. https://doi.org/10.1145/42267.42268
  15. M.E. Messinger, R. Nowakowski and P. Pralat, Cleaning a network with brushes, Theoret. Comput. Sci., 399(2008), 191-205. https://doi.org/10.1016/j.tcs.2008.02.037
  16. N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B, 35(1983), 39-61. https://doi.org/10.1016/0095-8956(83)90079-5
  17. N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7(1986), 309-322. https://doi.org/10.1016/0196-6774(86)90023-4
  18. P. Scheffler, Die Baumweite von Graphen als ein Mass fur die Kompliziertheit algorithmischer Probleme, Ph.D. Thesis, Akademie der Wissenschafien der DDR, Berlin, 1989.
  19. P. D. Seymour and R. Thomas, Graph searching and a mini-max theorem for treewidth, J. Combin. Theory Ser. B, 58(1993), 22-33. https://doi.org/10.1006/jctb.1993.1027
  20. R. Tosic, Search number of the cartesian product of graphs, Univ. Novom Sabu Zb. Rad. Prirod.-Mat Fak. Ser. Mat., 17(1987), 239-243.
  21. B. Yang, D. Dyer and B. Alspach, Sweeping graphs with large clique number, Discrete Math., 309(2009), 5770-5780. https://doi.org/10.1016/j.disc.2008.05.033