DOI QR코드

DOI QR Code

Existence and Uniqueness of Solutions of Fractional Differential Equations with Deviating Arguments under Integral Boundary Conditions

  • Dhaigude, Dnyanoba (Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Rizqan, Bakr (Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University)
  • Received : 2017.04.12
  • Accepted : 2018.12.19
  • Published : 2019.03.23

Abstract

The aim of this paper is to develop a monotone iterative technique by introducing upper and lower solutions to Riemann-Liouville fractional differential equations with deviating arguments and integral boundary conditions. As an application of this technique, existence and uniqueness results are obtained.

Keywords

References

  1. R. P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Difference Equ., (2010), Art. ID 179750, 25 pp.
  2. R. P. Agarwal, B. de Andrade and G. Siracusa,On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl., 62(2011), 1143-1149. https://doi.org/10.1016/j.camwa.2011.02.033
  3. R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
  4. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 1999.
  5. M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 218(1965), 70-78.
  6. Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
  7. S. P. Bhairat and D. B. Dhaigude, Ulam stability for system of nonlinear implicit fractional differential equations, Prog. Nonlinear Dyn. Chaos, 6(1)(2018), 29-38
  8. T. A. Burton, Differential inequalities for integral and delay differential equations, Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math. 162, Dekker, New York, 1994.
  9. J. V. Devi, F. A. McRae and Z. Drici, Variational Lyapunov method for fractional differential equations, Comp. Math. Appl., 64(2012), 2982-2989. https://doi.org/10.1016/j.camwa.2012.01.070
  10. D. B. Dhaigude and Sandeep P. Bhairat, Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations, Comm. Appl. Anal, 22(1) (2018), 121-134.
  11. D. B. Dhaigude and Sandeep P. Bhairat, Local Existence and Uniqueness of Solution for Hilfer-Hadamard fractional differential problem, Nonlinear Dyn. Syst. Theory, 18(2)(2018), 144-153.
  12. C. P. Dhaigude-Chitalkar, Sandeep P. Bhairat and D. B. Dhaigude, Solution of fractional differential equations involving Hilfer fractional derivative: method of successive approximations, Bull. Marathwada Math. Soc., 18(2)(2017), 1-13.
  13. D. B. Dhaigude, N. B. Jadhav and J. A. Nanware, Method of upper lower solutions for nonlinear system of fractional differential equations and applications, Malaya J. Mat., 6(3)(2018), 467-472. https://doi.org/10.26637/MJM0603/0001
  14. D. B. Dhaigude, J. A. Nanware and V. R. Nikam, Monotone Technique for System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti. Discrete Impuls. Syst. Ser. A Math. Anal., 19(2012), 575-584.
  15. D. B. Dhaigude and B. H. Rizqan, Existence and uniqueness of solutions for fractional differential equations with advanced arguments, Adv. Math. Models Appl., 2(3)(2017), 240-250.
  16. D. B. Dhaigude and B. H. Rizqan, Monotone iterative technique for caputo fractional differential equations with deviating arguments, Ann. Pure Appl. Math., 16(1)(2018), 181-191. https://doi.org/10.22457/apam.v16n1a20
  17. D. B. Dhaigude and B. H. Rizqan, Existence results for nonlinear fractional differential equations with deviating arguments under integral boundary conditions, Far East J. Math. Sci., 108(2)(2018), 273-284. https://doi.org/10.17654/ms108020273
  18. N. B. Jadhav and J. A. Nanware, Integral boundary value problem for system of nonlinear fractional differential equations, Bull. Marathwada Math. Soc., 18(2)(2017), 23-31.
  19. T. Jankowski, Fractional differential equations with deviating arguments, Dyn. Syst. Appl., 17(3)(2008), 677-684.
  20. T. Jankowski, Existence results to delay fractional differential equations with nonlinear boundary conditions, Appl. Math. Comput., 219(2013), 9155-9164. https://doi.org/10.1016/j.amc.2013.03.045
  21. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204, 2006.
  22. P. Kumar, D. N. Pandey and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., 7(2014), 102-114. https://doi.org/10.22436/jnsa.007.02.04
  23. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Pub. Co, Boston, 1985.
  24. V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69(2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
  25. V. Lakshmikanthan and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21(2008), 828-834. https://doi.org/10.1016/j.aml.2007.09.006
  26. N. Li and C. Y. Wang, New existence results of positive solution for a class of nonlinear fractional differential equations, Acta Math. Sci. Ser. B, 33(2013), 847-854. https://doi.org/10.1016/S0252-9602(13)60044-2
  27. L. Lin, X. Liu and H. Fang, Method of upper and lower solutions for fractional differential equations, Electron. J. Diff. Eq., 100(2012), 13 pp.
  28. X. Liu, M. Jia and B. Wu, Existence and uniqueness of solution for fractional differential equations with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 69(2009), 10 pp.
  29. F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71(2009), 6093-6096. https://doi.org/10.1016/j.na.2009.05.074
  30. J. A. Nanware and D. B. Dhaigude, Existence and uniqueness of solutions of Riemann-Liouville fractional differential equation with integral boundary condition, Int. J. Nonlinear Sci., 14(2012), 410-415.
  31. J. A. Nanware and D. B. Dhaigude, Boundary Value Problems for Differential Equations of Noninteger Order Involving Caputo Fractional Derivative, Adv. Stu. Contem. Math., 24(2014), 369-376.
  32. J. A. Nanware and D. B. Dhaigude , Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., 7(2014), 246-254. https://doi.org/10.22436/jnsa.007.04.02
  33. J. A. Nanware and D. B. Dhaigude, Monotone technique for finite system of Caputo fractional differential equations with periodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22(1)(2015), 13-23.
  34. J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Monotone iterative technique for finite system of Riemann-Liouville fractional differential equations with integral boundary conditions, Internat. Conf. Math. Sci., June, (2014), 235-238.
  35. J. A. Nanware, N. B.Jadhav and D. B. Dhaigude, Initial value problems for fractional differential equations involving Riemann-Liouville derivative, Malaya J. Mat., 5 (2)(2017), 337-345.
  36. I. Podlubny, Fractional differential equations, mathematics in science and engineering, Academic Press, New York, 1999.
  37. B. H. Rizqan and D. B. Dhaigude, Positive solutions of nonlinear fractional differential equations with advanced arguments under integral boundary value conditions, Indian J. Math., 60(3)(2018), 491-507.
  38. B. H. Rizqan and D. B. Dhaigude, Nonlinear boundary value problem of fractional differential equations with advanced arguments under integral boundary conditions, Tamkang J. Math., (Accepted).
  39. A. Shi and S. Zhang, Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ., 30(2009), 13 pp.
  40. X. Wang, L. Wang, and Z. Qinghong, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8(2015), 309-314.
  41. T.Wang and F. Xie, Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 1(2008), 206-212. https://doi.org/10.22436/jnsa.001.04.02
  42. S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71(2009), 2087-2093. https://doi.org/10.1016/j.na.2009.01.043
  43. S. Q. Zhang and X. W. Su, The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions inreverse order, Comput. Math. Appl., 62(2011), 1269-1274. https://doi.org/10.1016/j.camwa.2011.03.008