References
- R. P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Difference Equ., (2010), Art. ID 179750, 25 pp.
- R. P. Agarwal, B. de Andrade and G. Siracusa,On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl., 62(2011), 1143-1149. https://doi.org/10.1016/j.camwa.2011.02.033
- R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
- R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 1999.
- M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 218(1965), 70-78.
- Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
- S. P. Bhairat and D. B. Dhaigude, Ulam stability for system of nonlinear implicit fractional differential equations, Prog. Nonlinear Dyn. Chaos, 6(1)(2018), 29-38
- T. A. Burton, Differential inequalities for integral and delay differential equations, Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math. 162, Dekker, New York, 1994.
- J. V. Devi, F. A. McRae and Z. Drici, Variational Lyapunov method for fractional differential equations, Comp. Math. Appl., 64(2012), 2982-2989. https://doi.org/10.1016/j.camwa.2012.01.070
- D. B. Dhaigude and Sandeep P. Bhairat, Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations, Comm. Appl. Anal, 22(1) (2018), 121-134.
- D. B. Dhaigude and Sandeep P. Bhairat, Local Existence and Uniqueness of Solution for Hilfer-Hadamard fractional differential problem, Nonlinear Dyn. Syst. Theory, 18(2)(2018), 144-153.
- C. P. Dhaigude-Chitalkar, Sandeep P. Bhairat and D. B. Dhaigude, Solution of fractional differential equations involving Hilfer fractional derivative: method of successive approximations, Bull. Marathwada Math. Soc., 18(2)(2017), 1-13.
- D. B. Dhaigude, N. B. Jadhav and J. A. Nanware, Method of upper lower solutions for nonlinear system of fractional differential equations and applications, Malaya J. Mat., 6(3)(2018), 467-472. https://doi.org/10.26637/MJM0603/0001
- D. B. Dhaigude, J. A. Nanware and V. R. Nikam, Monotone Technique for System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti. Discrete Impuls. Syst. Ser. A Math. Anal., 19(2012), 575-584.
- D. B. Dhaigude and B. H. Rizqan, Existence and uniqueness of solutions for fractional differential equations with advanced arguments, Adv. Math. Models Appl., 2(3)(2017), 240-250.
- D. B. Dhaigude and B. H. Rizqan, Monotone iterative technique for caputo fractional differential equations with deviating arguments, Ann. Pure Appl. Math., 16(1)(2018), 181-191. https://doi.org/10.22457/apam.v16n1a20
- D. B. Dhaigude and B. H. Rizqan, Existence results for nonlinear fractional differential equations with deviating arguments under integral boundary conditions, Far East J. Math. Sci., 108(2)(2018), 273-284. https://doi.org/10.17654/ms108020273
- N. B. Jadhav and J. A. Nanware, Integral boundary value problem for system of nonlinear fractional differential equations, Bull. Marathwada Math. Soc., 18(2)(2017), 23-31.
- T. Jankowski, Fractional differential equations with deviating arguments, Dyn. Syst. Appl., 17(3)(2008), 677-684.
- T. Jankowski, Existence results to delay fractional differential equations with nonlinear boundary conditions, Appl. Math. Comput., 219(2013), 9155-9164. https://doi.org/10.1016/j.amc.2013.03.045
- A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204, 2006.
- P. Kumar, D. N. Pandey and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., 7(2014), 102-114. https://doi.org/10.22436/jnsa.007.02.04
- G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Pub. Co, Boston, 1985.
- V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69(2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
- V. Lakshmikanthan and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21(2008), 828-834. https://doi.org/10.1016/j.aml.2007.09.006
- N. Li and C. Y. Wang, New existence results of positive solution for a class of nonlinear fractional differential equations, Acta Math. Sci. Ser. B, 33(2013), 847-854. https://doi.org/10.1016/S0252-9602(13)60044-2
- L. Lin, X. Liu and H. Fang, Method of upper and lower solutions for fractional differential equations, Electron. J. Diff. Eq., 100(2012), 13 pp.
- X. Liu, M. Jia and B. Wu, Existence and uniqueness of solution for fractional differential equations with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 69(2009), 10 pp.
- F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71(2009), 6093-6096. https://doi.org/10.1016/j.na.2009.05.074
- J. A. Nanware and D. B. Dhaigude, Existence and uniqueness of solutions of Riemann-Liouville fractional differential equation with integral boundary condition, Int. J. Nonlinear Sci., 14(2012), 410-415.
- J. A. Nanware and D. B. Dhaigude, Boundary Value Problems for Differential Equations of Noninteger Order Involving Caputo Fractional Derivative, Adv. Stu. Contem. Math., 24(2014), 369-376.
- J. A. Nanware and D. B. Dhaigude , Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., 7(2014), 246-254. https://doi.org/10.22436/jnsa.007.04.02
- J. A. Nanware and D. B. Dhaigude, Monotone technique for finite system of Caputo fractional differential equations with periodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22(1)(2015), 13-23.
- J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Monotone iterative technique for finite system of Riemann-Liouville fractional differential equations with integral boundary conditions, Internat. Conf. Math. Sci., June, (2014), 235-238.
- J. A. Nanware, N. B.Jadhav and D. B. Dhaigude, Initial value problems for fractional differential equations involving Riemann-Liouville derivative, Malaya J. Mat., 5 (2)(2017), 337-345.
- I. Podlubny, Fractional differential equations, mathematics in science and engineering, Academic Press, New York, 1999.
- B. H. Rizqan and D. B. Dhaigude, Positive solutions of nonlinear fractional differential equations with advanced arguments under integral boundary value conditions, Indian J. Math., 60(3)(2018), 491-507.
- B. H. Rizqan and D. B. Dhaigude, Nonlinear boundary value problem of fractional differential equations with advanced arguments under integral boundary conditions, Tamkang J. Math., (Accepted).
- A. Shi and S. Zhang, Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ., 30(2009), 13 pp.
- X. Wang, L. Wang, and Z. Qinghong, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8(2015), 309-314.
- T.Wang and F. Xie, Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 1(2008), 206-212. https://doi.org/10.22436/jnsa.001.04.02
- S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71(2009), 2087-2093. https://doi.org/10.1016/j.na.2009.01.043
- S. Q. Zhang and X. W. Su, The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions inreverse order, Comput. Math. Appl., 62(2011), 1269-1274. https://doi.org/10.1016/j.camwa.2011.03.008