• Title/Summary/Keyword: retaining structures

Search Result 265, Processing Time 0.023 seconds

A study on reduction effects of the ground loss in pre-loading (선행하중 재하시 지반손실 감소효과에 관한 연구)

  • Kim, Bong-Yoo;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.224-231
    • /
    • 2005
  • The ground excavation causes the deformation of the ground where the neighborhood structure is located. The ground deformation result in the vertical settlement of the neighborhood structure as well as the horizontal displacement of the temporary earth retaining structures. The decreased volume of the soil due to the ground settlement is defined as 'the ground loss quantity' or 'the ground loss'. When excavation is performed nearby existing structures, retaining walls should be designed and constructed to minimize the ground loss. Among various methods for reducing the ground loss, this study introduces the pre-loading method which has been recently developed. The reduction effect of the ground loss by pre-loading has been found to be larger as using a wall with relatively smaller rigidity.

  • PDF

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.

A Development of the Design Program of the Cantilever-Retaining Wall with Exiting Design Data (기존의 설계 자료를 이용한 켄틸레버식 옹벽의 설계.프로그램 개발)

  • 정진환;계만수;손상영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.160-167
    • /
    • 1999
  • There are numerous factors in designing the structures in civil engineering even for relatively simple ones such as cantilever retaining walls. So the designer has to be decide for such conditions and this makes the design difficult. Moreover some errors may be made in the drawing works which must be relate the structural calculations. In this study, the design program which makes structural calculations, report and drawings for cantilever retaining wall at a time was developed to reduce the manmade errors. This program also suggests some guidelines and systematic data-bases of previously designed examples to make decisions easy.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF

Case Study on the Design of Earth Retaining and Retention Wall Using Pre-casted Concreted Pile(PHC) (기성콘크리트말뚝(PHC)을 이용한 옹벽겸용 흙막이설계사례)

  • Han, Jung-Geun;Cho, Young-Ryang;Kim, Sang-Kwi;Park, Sang-Cheol;Eo, Yun-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • The bearing methods using pile of steel itself or reinforced concrete has been applying which in excavated depth was not deep. Also, the retaining wall as resisting structure to lateral force has taken weakness that the cure periods of concreted is long. Recently, with the material cost of steel, the application of cement is more increasing trend. In this study, the design methods of earth retaining and retention wall within the pre-casted concrete pile, PHC(Pretentioned spun High strength Concrete piles), was proposed which in the ground condition of excavated depth was not deep. The typical ground conditions, cohesive and non-cohesive soil, was considered as follows; soil strength as internal friction angle and UU(Undrained Unconsolidation triaxial test) strength, soil reaction and stabilization of structures. The application of design methods could be confirmed through the comparing and analyzing between measured data and utility software for the design.

A Case Study on the Self-Supported Earth Retaining Wall with Different Formations (다양한 형태의 2열 자립식 흙막이 공법 시공사례 연구)

  • Sim, Jae-Uk;Kim, Kyoung-Chul;Son, Sung-Gon;Park, Young-Jin;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1039-1049
    • /
    • 2010
  • Excavation support systems are the temporary earth retaining structures that can prevent the lateral movement of soils. The systems are initially performed before other construction operations and have a great impact on the entire construction period. The temporary support system in Korea have been carried out generally along with installing supports, which are struts, tiebacks, and rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system (referred to as the SSR, New Construction Technology No. 533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

Site Monitoring of the Retaining Wall Reinforced by Geogrids with Block Type Facings (지오그리드 보강토 옹벽의 계측평가)

  • Kim, Jin-Man;Lee, Dae-Young;Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.106-114
    • /
    • 2006
  • Uses of geosynthetics as a reinforcing material for earth structures have ever increased due to their excellent economy. fine external appearance. and easy construction. In the current practice of geosynthetics. however, the lacks of the standardized method of evaluating the soil/geosynthetics friction properties and the inconsistency of conventional design methods develop confusion to the civil engineers. The purpose of site monitoring of the retaining wall reinforced by geogrids was to evaluate the applicability of existing design methods to, and performance of. CHAMSTONE wall system. Full scale field performance during and after construction was monitored by incorporating instrumentation including strain gauges on the geogrid and soil pressure cells. The difference of the reinforcing effects of geosynthetics embedded in the soil will be also investigated by comparing of the line and curve types of retaining wall reinforced by geogrids with block type facings.

Maintenance Characteristics of Geotechnical Structures in Cold Region for Freeze Damage Analysis (동결피해분석을 위한 저온지역 지반구조물의 보수보강특성)

  • Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2013
  • In most cases, Geotechnical Structures installed in freezing areas require extra countermeasures for reducing freeze damage. However, in terms of domestic tunnels, studies and case reports for geotechnical structures such as tunnels and retaining walls are not fluently carried out, causing lack of research about ways to decrease freeze damage. For these causes, domestic design criteria about structures does not specifically institutionalization for geotechnical structures. This research have done on-site investigation about tunnels, cut slopes and retaining walls. Also, this research includes the process of analyzing the histories of maintenance for class 1 and class 2 structures that happened in the past 40 years, studying characteristics of structure's maintenance and reinforcement in different areas with different climate. As the result, it was analyzed that domestic geotechnical structures showed need for longer maintenance and reinforcement that are located in Gangwon mountain area, Gangwon north region and Gyeonggi north region where the temperature is relatively low. This research can be concluded in need for revision of design criteria for structures located in freeze damage area.