• Title/Summary/Keyword: repair warranty

Search Result 67, Processing Time 0.019 seconds

Replacement model under warranty with age-dependent minimal repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.18 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • In this paper, we consider a renewable repair-replacement warranty strategy with age-dependent minimal repair service and propose an optimal maintenance model during post-warranty period. Such model implements the repair time limit under warranty and follows with a certain form of system maintenance strategy when the warranty expires. The expected cost rate is investigated per unit time during the life period of the system as for the standard for optimality. Based on the cost design defined for each failure of the system, the expected cost rate is derived during the life period of the system, considering that a renewable minimal repair-replacement warranty strategy with the repair time limit is provided to the customer under warranty. When the warranty is finished, the maintenance of the system is the customer's responsibility. The life period of the system is defined and the expected cost rate is developed from the viewpoint of the customer's perspective. We obtain the optimal maintenance strategy during the maintenance period by minimizing such a cost rate after a warranty expires. Numerical examples using field data are shown to exemplify the application of the methodologies proposed in this paper.

  • PDF

Warranty Analysis Based on Different Lengths of Warranty Periods

  • Park, Min-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.277-286
    • /
    • 2011
  • Global companies can sell their products with dierent warranty periods based on location and times. Customers can select the length of warranty on their own if they pay an additional fee. In this paper, we consider the warranty period and the repair time limit as random variables. A two-dimensional warranty policy is considered with repair times and failure times. The repair times are considered within the repair time limit and the failure times are considered within the warranty period. Under the non-renewable warranty policy, we obtain the expected number of warranty services and their variances in the censored area by warranty period and repair time limit to conduct a warranty cost analysis. Numerical examples are discussed to demonstrate the applicability of the methodologies and results using field data based on the proposed approach in the paper.

Extended warranty model under minimal repair-replacement warranty policy

  • Jung, Ki Mun
    • International Journal of Reliability and Applications
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we study an extended warranty model under minimal repair-replacement warranty (MRRW) which is suggested by Park, Jung and Park (2013). Under MRRW policy, the manufacturer is responsible for providing the minimal repair-replacement services upon the system failures during the warranty period. And if the failure occurs during the extended warranty period, only the minimal repair is conducted. Following the expiration of extended warranty, the user is solely responsible for maintaining the system for a fixed length of time period and replaces the system at the end of such a maintenance period. During the maintenance period, only the minimally repair is given for each system failure. The main purpose of this article is to suggest the extended warranty and replacement model with MRRW. Given the cost structures incurred during the life cycle of the system, we formulate the expected cost and the expected length of life cycle to obtain the expected cost rate.

  • PDF

Optimal replacement strategy under repair warranty with age-dependent minimal repair cost

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, we suggest the optimal replacement policy following the expiration of repair warranty when the cost of minimal repair depends on the age of system. To do so, we first explain the replacement model under repair warranty. And then the optimal replacement policy following the expiration of repair warranty is discussed from the user's point of view. The criterion used to determine the optimality of the replacement model is the expected cost rate per unit time, which is obtained from the expected cycle length and the expected total cost for our replacement model. The numerical examples are given for illustrative purpose.

  • PDF

Warranty cost modeling using the parametric method

  • Park, Min-Jae
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • In the paper, we consider two-dimensional warranty policy with failure times and repair times. The failure times are considered within the warranty period and the repair times are considered within the repair time limit. Under the renewable warranty policy and non-renewable warranty policy, we consider the number of warranty services in the censored area by warranty period and repair time limit to conduct warranty cost analysis. We investigate the field data to check their dependency and implement our proposed approaches to conduct warranty cost analysis using the parametric methods. Numerical examples are discussed to demonstrate the applicability of the methodologies and results based on the proposed approach in the paper.

Cost analysis of RRNRW from the manufacturer's perspective (재생교체-비재생수리보증에 대한 생산자 측면의 비용분석)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.12 no.4
    • /
    • pp.255-263
    • /
    • 2012
  • This paper considers the cost analysis from the manufacturer's point of view for renewing replacement and non-renewing repair warranty(RRNRW) of a repairable system. To do so, we consider the renewing replacement and non-renewing repair warranty, which is proposed by Jung(2011). To analysis the expected warranty cost from the manufacturer's perspective for renewing replacement and non-renewing warranty, we obtain the expected total warranty cost and the expected warranty length which are very important information for the manufacturer. Finally, the numerical examples are presented for illustrative purpose.

Preventive Maintenance Model after Minimal Repair Warranty (최소수리보증 이후의 예방보전모형)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.865-877
    • /
    • 2010
  • This paper considers the periodic preventive maintenance model for a repairable system following warranty expiration. We consider three types of warranty policies: free repair warranty, pro-rata repair warranty, and combination repair warranty. Under these preventive maintenance models, we derive the expressions for the expected cycle length, the total expected cost, and the expected cost rate per unit time. In addition, we explain the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for a Weibull distribution case.

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Cost Analysis of a Two-dimensional Warranty Policy with Replacement and Repair Regions (교체와 수리영역을 갖는 이차원 보증정책의 비용분석)

  • Yun, Won-Young;Yoo, Seung-Hyo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.247-253
    • /
    • 1996
  • This paper proposes a new two-dimensional warranty policy with replacement and repair regions and analyses the warranty cost under the new warranty policy. The product is sold under a two-dimensional warranty(usage and age) in which two regions exist : the failed product is replaced by the manufacturer in the replacement region or minimally repaired by the manufacturer in the repair region. The formula of the expected warranty cost under some assumptions about usage and failure is obtained. Numerical examples are studied.

  • PDF

Optimal replacement policy after extended warranty for a system with minimal repair warranty (최소수리 보증을 갖는 시스템에 대한 연장된 보증 이후의 최적의 교체정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • Recently, an extended warranty of a system following the expiration of the basic warranty is becoming increasingly popular to the user. In this respect, we suggest a replacement model following the expiration of extended warranty with minimal repair warranty from the user's point of view in this paper. Under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective and suggest the optimal replacement period after extended warranty. Finally, a few numerical examples are given for illustrative purpose.