• Title/Summary/Keyword: ray code

Search Result 183, Processing Time 0.024 seconds

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Effect of Imperfect Power Control on Performance of a PN Code Tracking Loop for a DS/CDMA System

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.209-212
    • /
    • 2000
  • In this paper, effect of imperfect power control on performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access (DS/CDMA) system. The multipath fading channel is modeled as a two-ray Rayleigh fading model. Power control error is modeled as a log-normally distributed random variable. The tracking performance of DLL (delay-locked-loop) is evaluated in terms of tracking jitter and mean-time-to-lose-lock (MTLL). From the simulation results, it is shown that the PN tracking performance is very sensitive to the power control error.

  • PDF

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding (사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

A Study of 2-dimensional X-ray Detector using Monte Carlo Simulation (몬테 카를로 시뮬레이션을 이용한 2차원 X-선 검출기에 대한 연구)

  • Shin, Hyoung-Sup;Lee, Hak-Jae;Lee, Ki-Sung;Kang, Jung-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.67-70
    • /
    • 2010
  • X-ray absorption rate and multiplication factor of X-ray detector were calculated with Garfield code. High Z (= atomic number) was important factor to increase the absorption rate but low Z is also important to increase the multiplication. Five different gas composition were examined under the condition of 1400 V bias and 400 um gap. Xe 100% gas showed the highest absorption rate and He 96% + isobutene 4% showed the highest multiplication.

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Radiation Hydrodynamics of 2-D Accretion Disks

  • OKUDA TORU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.251-254
    • /
    • 2001
  • To examine the structure and dynamics of thick accretion disks, we use a two-dimensional viscous hydrodynamic code coupled with radiation transport. The $\alpha$-model and the full viscous stress-tensor description for the kinematic viscosity are used. The radiation transport is treated in the gray, flux-limited diffusion approximation. The finite difference methods used are based on an explicit-implicit method. We apply the numerical code to the Super-Eddington black-hole model for SS 433.@The result for a very small viscosity parameter a reproduces well the characteristic features of SS 433, such as the relativistic jets with $\~$0.26c, the small collimation degree of the jets, the mass-outflow rate of ${\ge}5{\times}10^{-7}M{\bigodot}yr^{-1}$, and the formation of the X-ray iron emission lines.

  • PDF

Tracking performance of a CDD-DLL code tracking loop in a multipath fading channel (다중경로 페이딩 전송로에서 CDD-DLL 부호 추적 루프의 추적성능)

  • 김진영;이재홍
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.1-9
    • /
    • 1996
  • in this paper, we analyzed CDD-DLL code tracking loop for tracking of direct-sequence spread-spectrum signals in a multipath fading channel. The multipath fading channel is modeled as two-ray rayleigh fading channel which is well applicable in a land mobile communication environments. We use trackin jitter variance and mean-time-to-lose-lick as performance measures. From the numerical resutls, it is shown that the effect of multipath fading decreases as SNR/bit increases. Also it is shown that CDD-DLL provides superior jitter performance compared with noncoherent DLL and jitter performance improvement is more significant for a two-ray rayleigh fading channel than an AWGN channel.

  • PDF

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.