DOI QR코드

DOI QR Code

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O. (Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah) ;
  • ALMisned, Ghada (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • Issa, Shams A.M. (Physics Department, Faculty of Science, University of Tabuk) ;
  • Zakaly, Hesham M.H. (Physics Department, Faculty of Science, Al-Azhar University)
  • Received : 2022.02.01
  • Accepted : 2022.03.26
  • Published : 2022.09.25

Abstract

Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

Keywords

Acknowledgement

This work was performed under Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah bunt Abdulrahman University, Riyadh, Saudi Arabia. The authors express their sincere gratitude to Princess Nourah bint Abdulrahman University.

References

  1. D. Adliene, B. Griciene, K. Skovorodko, J. Laurikaitiene, J. Puiso, Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers, Environ. Res. 183 (2020) 109144, https://doi.org/10.1016/j.envres.2020.109144.
  2. K.F. Salama, A. Alobireed, M. Albagawi, Y. Alsufayan, M. Alserheed, Assessment of occupational radiation exposure among medical staff in health-care facilities in the Eastern Province, Kingdom of Saudi Arabia, Indian J. Occup. Environ. Med. 20 (2016) 21, https://doi.org/10.4103/0019-5278.183832.
  3. C. Heilmaier, A. Mayor, N. Zuber, P. Fodor, D. Weishaupt, Improving radiation awareness and feeling of personal security of non-radiological medical staff by implementing a traffic light system in computed tomography, Rofo 188 (2016) 280-287, https://doi.org/10.1055/S-0041-110450.
  4. P.M. Maina, J.A. Motto, L.J. Hazell, Investigation of radiation protection and safety measures in Rwandan public hospitals: readiness for the implementation of the new regulations, J. Med. Imag. Radiat. Sci. 51 (2020) 629-638, https://doi.org/10.1016/j.jmir.2020.07.056.
  5. J.M. Shin, T.H. Lee, S.H. Park, S.G. Kang, Y.S. Lee, S.J. Park, M.G. Ku, S.H. Lee, I.K. Chung, H.J. Choi, J.H. Moon, S.W. Cha, Y.D. Cho, S.J. Kim, A survey of the radiation exposure protection of health care providers during endoscopic retrograde cholangiopancreatography in Korea, Gut Liver 7 (2013) 100-105, https://doi.org/10.5009/gnl.2013.7.1.100.
  6. W.R. Hendee, F. Marc Edwards, ALARA and an integrated approach to radiation protection, Semin. Nucl. Med. 16 (1986) 142-150, https://doi.org/10.1016/S0001-2998(86)80027-7.
  7. M. Junda, H. Muller, H. Friedrich-Nel, Local diagnostic reference levels for routine chest x-ray examinations at a public sector hospital in central South Africa, Health SA Gesondheid 26 (2021), https://doi.org/10.4102/hsag.v26i0.1622.
  8. D.Z. Solomon, B. Ayalew, S.T. Dellie, D. Admasie, Justification and optimization principles of ALARA in pediatric CT at a teaching hospital in Ethiopia, Ethiop. J. Health Sci. 30 (2020) 761-766, https://doi.org/10.4314/ejhs.v30i5.16.
  9. J.V. Vitola, F. Mut, E. Alex anderson, T.N.B. Pascual, M. Mercuri, G. Karthikeyan, N. Better, M.M. Rehani, R. Kashyap, M. Dondi, D. Paez, A.J. Einstein, Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS), J. Nucl. Cardiol. 24 (2017) 851-859, https://doi.org/10.1007/s12350-016-0433-3.
  10. A. Mukherji, T. Gupta, J.P. Agarwal, Time, distance, shielding and ALARA; Drawing similarities between measures for radiation protection and Coronavirus disease pandemic response, Indian J. Cancer 57 (2020) 221-223, https://doi.org/10.4103/ijc.IJC-343-20.
  11. J.H. Kim, Three principles for radiation safety: time, distance, and shielding, Korean J. Pain 31 (2018) 145, https://doi.org/10.3344/KJP.2018.31.3.145.
  12. H. Schlattl, M. Zankl, H. Eder, C. Hoeschen, Shielding properties of lead-free protective clothing and their impact on radiation doses, Med. Phys. 34 (2007) 4270-4280, https://doi.org/10.1118/1.2786861.
  13. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, D.E. Lee, J. Yoon, T. Park, Binary B2O3-Bi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities, J. Mater. Res. Technol. 9 (2020) 14549-14567, https://doi.org/10.1016/j.jmrt.2020.10.019.
  14. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, M.G. Dong, D.E. Lee, J. Yoon, T. Park, In-depth survey of nuclear radiation attenuation efficacies for high density bismuth lead borate glass system, Results Phys. 23 (2021) 104030, https://doi.org/10.1016/j.rinp.2021.104030.
  15. H.O. Tekin, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, N. Tarhan, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, A systematical characterization of teo2-v2o5 glass system using boron (Iii) oxide and neodymium (iii) oxide substitution: resistance behaviors against ionizing radiation, Appl. Sci. 11 (2021) 3035, https://doi.org/10.3390/app11073035.
  16. G. Almisned, H.O. Tekin, G. Bilal, A. Ene, G. Kilic, S.A.M. Issa, M. Algethami, H.M.H. Zakaly, Trivalent ions and their impacts on effective conductivity at 300k and radio-protective behaviors of bismo-borate glasses: a comparative investigation for al, y, nd, in: Materials (Basel), 14, eu, sm, 2021, https://doi.org/10.3390/ma14195894.
  17. K. Matsubara, H. Nagata, R. Okubo, T. Takata, M. Kobayashi, Method for determining the half-value layer in computed tomography scans using a realtime dosimeter: application to dual-source dual-energy acquisition, Phys. Med. 44 (2017) 227-231, https://doi.org/10.1016/j.ejmp.2017.10.020.
  18. T. Gotanda, T. Katsuda, R. Gotanda, A. Tabuchi, K. Yamamoto, T. Kuwano, H. Yatake, K. Kashiyama, Y. Takeda, Half-value layer measurement: simple process method using radiochromic film, Australas. Phys. Eng. Sci. Med. 32 (2009) 150-158, https://doi.org/10.1007/BF03178642.
  19. R. Ishii, A. Yoshida, M. Ishii, S. Fujimoto, N. Henmi, [Precision of half-value layer measurement on mammography], Nippon. Hoshasen Gijutsu Gakkai Zasshi 67 (2011) 1533-1539, https://doi.org/10.6009/jjrt.67.1533.
  20. Y. Bai, Y. yi Wang, L. Zhang, R. fa Bu, [Shielding property of different prosthetic materials to shield radiation of (125)I seed], Zhonghua Kou Qiang Yi Xue Za Zhi 46 (2011) 502-504 (accessed March 19, 2022), https://europepmc.org/article/med/22169750.
  21. G. Almisned, H.M.H. Zakaly, S.A.M. Issa, A. Ene, G. Kilic, O. Bawazeer, A. Almatar, D. Shamsi, E. Rabaa, Z. Sideig, H.O. Tekin, Gamma-ray protection properties of bismuth-silicate glasses against some diagnostic nuclear medicine radioisotopes: a comprehensive study, Materials (Basel) 14 (2021), https://doi.org/10.3390/ma14216668.
  22. H.M. Zakaly, A. Ashry, A. El-Taher, A.G.E. Abbady, E.A. Allam, R.M. El-Sharkawy, M.E. Mahmoud, Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study, Radiat. Phys. Chem. 188 (2021), https://doi.org/10.1016/j.radphyschem.2021.109667.
  23. E. Ilik, E. Kavaz, G. Kilic, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties, Ceram. Int. 48 (2022) 6780-6791, https://doi.org/10.1016/j.ceramint.2021.11.229.
  24. A. Fukuda, N. Ichikawa, M. Tashiro, T. Yamao, K. Murakami, H. Kubo, Measurement of the half-value layer for CT systems in a single-rotation technique: reduction of stray radiation with lead apertures, Phys. Med. 76 (2020) 221-226, https://doi.org/10.1016/j.ejmp.2020.07.004.
  25. G. ALMisned, W. Elshami, S.A.M. Issa, G. Susoy, H.M.H. Zakaly, M. Algethami, Y.S. Rammah, A. Ene, S.A. Al-Ghamdi, A.A. Ibraheem, H.O. Tekin, Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: the role of lanthanum oxide reinforcement, Materials (Basel) 14 (2021) 7703, https://doi.org/10.3390/ma14247703.
  26. H.O. Tekin, F.T. Ali, G. Almisned, G. Susoy, S.A.M. Issa, A. Ene, W. Elshami, H.M.H. Zakaly, Multiple assessments on the gamma-ray protection properties of niobium-doped borotellurite glasses: a wide range investigation using Monte Carlo simulations, Sci. Technol. Nucl. Install. 2022 (2022) 1-17, https://doi.org/10.1155/2022/5890896.
  27. H.M.H. Zakaly, Y.S. Rammah, H.O. Tekin, A. Ene, A. Badawi, S.A.M. Issa, Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions, J. Mater. Res. Technol. (2022), https://doi.org/10.1016/J.JMRT.2022.03.030.
  28. H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, M. Rashad, A.I. Elazaka, H.O. Tekin, Y.B. Saddeek, Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: experimental and numerical analyses, Ceram. Int. 47 (2021) 5587-5596, https://doi.org/10.1016/j.ceramint.2020.10.143.
  29. M. Rashad, H.O. Tekin, H.M. Zakaly, M. Pyshkina, S.A.M. Issa, G. Susoy, Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles, Nucl. Eng. Technol. 52 (2020), https://doi.org/10.1016/j.net.2020.02.013, 2078-2084.
  30. H.O. Tekin, G. ALMisned, G. Susoy, F.T. Ali, D. Sen Baykal, A. Ene, S.A.M. Issa, Y.S. Rammah, H.M.H. Zakaly, Transmission factor (TF) behavior of Bi2O3-eTeO2-Na2OeTiO2-ZnO glass system: a Monte Carlo simulation study, Sustainability 14 (2022) 2893, https://doi.org/10.3390/su14052893.
  31. H.O. Tekin, G. Susoy, S.A.M. Issa, A. Ene, G. ALMisned, Y.S. Rammah, F.T. Ali, M. Algethami, H.M.H. Zakaly, Heavy Metal Oxide (HMO) glasses as an effective member of glass shield family: a comprehensive characterization on gamma ray shielding properties of various structures, J. Mater. Res. Technol. (2022), https://doi.org/10.1016/J.JMRT.2022.02.074.
  32. H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, A. Badawi, H.A. Saudi, A.M.A. Henaish, Y.S. Rammah, An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: structure, electrical conductivity, and gamma-ray resistance, Mater. Res. Bull. (2022) 111828, https://doi.org/10.1016/J.MATERRESBULL.2022.111828.
  33. RSICC Computer Code Collection, MCNPX User's manual version 2.4.0. MonteCarlo N-particle transport code system for multiple and high energy applications, Google Search, (n.d.), https://www.google.com/search?q=RSICC+Computer+Code+Collection%2C+MCNPX+User%27s+Manual+Version+2.4.0.+MonteCarlo+N-Particle+Transport+Code+System+for+Multiple+and+High+Energy+Applications%2C, 2002(2002).&oq=RSICC+Computer+Code+Collection%2C+MCNPX+User%27s+Manu (accessed December 31, 2020).
  34. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (version 1.5) [Online] Available: http://physics.nist.gov/xcom, Natl. Inst. Stand. Technol. Gaithersburg, MD. (2010) [Online] Available: http://physics.nist.gov/xcom. https://doi.org/10.18434/T48G6X.
  35. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, NIST Standard Reference Database 8 (XGAM), XCOM Phot. Cross Sect. Database., 2018. https://www.nist.gov/pml/xcom-photoncross-section.
  36. H.A. Saudi, S.A.M. Issa, A.I. Elazaka, H.M.H. Zakaly, G. Kilic, H.O. Tekin, Exploration of material characteristics of tantalum borosilicate glasses by experimental, simulation, and theoretical methods, J. Phys. Chem. Solid. 159 (2021), https://doi.org/10.1016/j.jpcs.2021.110282.