DOI QR코드

DOI QR Code

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG (Department of Earth Sciences, Pusan National University)
  • Published : 2003.09.01

Abstract

In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Keywords

References

  1. MNRAS v.182 The acceleration of cosmic rays in shock fronts. Ⅰ Bell,A.R. https://doi.org/10.1093/mnras/182.2.147
  2. Nuclear Physic B. v.39 Efficiency of CR acceleration in supernova remnants Berezhko,E.;Ksenofontov,L.;Yelshin,V.
  3. SIAM J. Numer. Anal. v.35 Adaptive Mesh Refinement using Wave-Propagation Algorithms for Hyperbolic Systems Berger,J.S.;LeVeque,R.J.
  4. ApJS v.58 Self-similar secondary infall and accretion in an Einstein-de Sitter universe Bertschinger,E. https://doi.org/10.1086/191028
  5. Phys. Rept. v.154 Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin Blandford,R.D.;Eichler,D. https://doi.org/10.1016/0370-1573(87)90134-7
  6. Annual Rev. Astron. Astrophys. v.40 Cluster magnetic fields Carilli,C.L.;Taylor,G.B. https://doi.org/10.1146/annurev.astro.40.060401.093852
  7. ApJ v.547 A New Radio-X-Ray Probe of Galaxy Cluster Magnetic Fields Clark,T.E.;Kronberg,P.P.;Boringer,H. https://doi.org/10.1086/318896
  8. Rept. Prog. Phys. v.46 An Introduction to the Theory of Shock Acceleration of Energetic Particles in Tenuous Plasmas Drury,L.O'C. https://doi.org/10.1088/0034-4885/46/8/002
  9. A&Ap v.344 Nonthermal origin of the EUV and HEX excess emission of the Coma cluster - the nature of the energetic electrons Ensslin,T.A.;Lieu,R.;Biermann,P.L.
  10. A&A v.302 The magnetic field in the Coma cluster Feretti,L.;Dallacasa,D.;Giovannini,G.;Tagliani,A.
  11. ApJ v.513 Hard X-Ray Radiation in the Coma Cluster Spectrum Fusco-Femiano,R.;Dal Fiume,D.;Feretti,L.;Giovannini,G.;Grandi,P.;Matt,G.;Molendi,S.;Santangelo,A. https://doi.org/10.1086/311902
  12. A&Ap v.364 Time dependent cosmic-ray shock acceleration with self-consistent injection Gieseler,U.D.J.;Jones,T.W.;Kang,H.
  13. New Astronomy v.5 Halo and relic sources in clusters of galaxies Giovannini,G.;Feretti,L. https://doi.org/10.1016/S1384-1076(00)00034-8
  14. ApJ v.363 Time-dependent evolution of cosmic-ray-mediated shocks in the two-fluid model Jones,T.W.;Kang,H. https://doi.org/10.1086/169361
  15. ApJ v.456 Contributions to the Cosmic Ray Flux above the Ankle: Clusters of Galaxies Kang,H.;Ryu,D.;Jones,T.W. https://doi.org/10.1086/176666
  16. MNRAS v.286 Contributions to the Comic Ray Flux above the Ankle: Clusters of Galaxies Kang,H.;Rachen,J.;Biermann,P.L. https://doi.org/10.1093/mnras/286.2.257
  17. ApJ v.550 Time Evolution of Cosmic-Ray Modified Plane Shocks Kang,H.;Jones,T.W.;LeVeque,R.J.;Shyue,K.M. https://doi.org/10.1086/319804
  18. ApJ, 1st issue v.579 Numerical Studies of Cosmic-Ray Injection and Acceleration Kang,H.;Jones,T.W.;Gieseler,U.D.J.
  19. JKAS v.35 Acceleration of Cosmic Rays at Large Scale Cosmic Shocks in the Universe Kang,H.;Jones,T.W. https://doi.org/10.5303/JKAS.2002.35.4.159
  20. Large Scale Structure in the universe seen in shocked gas Kang,H.;Ryu,D.;Song,D.J.
  21. ApJ v.355 Detection of excess rotation measure due to intracluster magnetic fields in clusters of galaxies Kim,K.T.;Kronberg,P.P.;Tribble,P.C. https://doi.org/10.1086/168737
  22. Rep. Prog. Phys. v.325 Kronberg,P.P.
  23. ApJ v.480 The Protogalactic Origin for Cosmic Magnetic Fields Kulsrud,R.M.;Cen,R.;Ostriker,J.P.;Ryu,D. https://doi.org/10.1086/303987
  24. SIAM J. Scien. Comput. v.16 One-dimensional front-tracking based on high resolution wave propagation methods LeVeque,R.J.;Shyue,K.M. https://doi.org/10.1137/0916023
  25. ApJ v.510 Nonthermal Origin of the EUV and Soft X-Rays from the Coma Cluster: Cosmic Rays in Equipartition with the Thermal Medium Lieu,R.;Ip,W.H.;Axford,W.I.;Bonamente,M. https://doi.org/10.1086/311790
  26. Nature v.405 Cosmic-ray background from structure formation in the intergalactic medium Loeb,A.;Waxmann,E. https://doi.org/10.1038/35012018
  27. RAS v.314 Non-linear amplification of a magnetic field driven by cosmic ray streaming Lucek,S.G.;Bell,A.R. https://doi.org/10.1046/j.1365-8711.2000.03363.x
  28. Phys. Rev. E v.58 Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation Malkov,M.A. https://doi.org/10.1103/PhysRevE.58.4911
  29. Rep. Progr. Phys. v.64 Nonlinear theory of diffusive acceleration of particles by shock waves Malkov,M.A.;Drury,L.O'C https://doi.org/10.1088/0034-4885/64/4/201
  30. Advances in Space Research v.21 Diffusive ion acceleration at shocks: the problem of injection Malkov,M.A.;Volk,H.J. https://doi.org/10.1016/S0273-1177(97)00961-7
  31. astro-ph/0203014 Inter-galactic Shock Acceleration and the Cosmic Gamma-ray Background Miniati,F. https://doi.org/10.1046/j.1365-8711.2002.05903.x
  32. ApJ v.542 Properties of Cosmic Shock Waves in Large-Scale Structure Formation Miniati,F.;Ryu,D.;Kang,H.;Jones,T.W.;Cen,R.;Ostriker,J. https://doi.org/10.1086/317027
  33. ApJ v.559 Cosmic-Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies Miniati,F.;Ryu,D.;Kang,H.;Jones,T.W. https://doi.org/10.1086/322375
  34. ApJ v.454 The Origin of Cosmic Rays above 10 18.5 eV Norman,C.A.;Melrose,D.B.;Achterberg,A. https://doi.org/10.1086/176465
  35. J. Geophys. Res. v.93 Theory and simulation of collisionless parallel shocks Quest,K.B. https://doi.org/10.1029/JA093iA09p09649
  36. A&AP v.335 Cosmic magnetic fields in large scale filaments and sheets Ryu,D.;Kang,H.;Biermann,P.L.
  37. MNRAS v.284 Accreting matter around clusters of galaxies: one-dimensional considerations Ryu,D.;Kang,H. https://doi.org/10.1093/mnras/284.2.416
  38. Cosmological shocks and cosmic rays in the large scale structure of the universe Ryu,D.;Kang,H.;Hallman,E.;Jones,T.W.
  39. ApJ v.520 The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission Sarazin,C.L. https://doi.org/10.1086/307501
  40. ApJ v.494 Extreme-Ultraviolet Emission from Clusters of Galaxies: Inverse Compton Radiation from a Relic Population of Cosmic Ray Electrons? Sarazin,C.L.;Lieu,R. https://doi.org/10.1086/311196
  41. astro-ph/0207411 A statistical detection of gamma-ray emission from galaxy clusters: implications for the gamma-ray background and structure formation Scharf,C.A.;Mukherjee,R. https://doi.org/10.1086/343035
  42. ApJ v.464 GRET Observations of the North Galactic Pole Region Sreekumar,P.;Bertsch,D.L.;Dingus,B.L.;Esposito,J.A.;Fichtel,G.E.;Fierro,J.;Hartman,R.C.;Hunter,S.D.;Kanbach,G.;Kniffen,D.A.;Lin,Y.C.;Mayer-Hasselwander,H.A.;Mattox,J.R.;Michelson,P.F.;von Montigny,C.;Mukherjee,R.;Nolan,P.L.;Schneid,E.;Thompson,D.J.;Willis,T.D. https://doi.org/10.1086/177352
  43. AJ v.107 Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059 Taylor,G.B.;Barton,E.J.;Ge,J.P. https://doi.org/10.1086/117006
  44. ARAA v.12 Cosmic-ray propagation in the Galaxy-Collective effects Wentzel,D.G. https://doi.org/10.1146/annurev.aa.12.090174.000443

Cited by

  1. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array vol.37, pp.4, 2016, https://doi.org/10.1007/s12036-016-9406-9