• Title/Summary/Keyword: quasilinear

Search Result 71, Processing Time 0.018 seconds

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1169-1182
    • /
    • 2011
  • In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form $$-div(h(x){\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+b(x){\mid}u{\mid}^{p-2}u=f(x,\;u),\;p{\geq}2$$ in an unbounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, with sufficiently smooth bounded boundary ${\partial}{\Omega}$, where $h(x){\in}L_{loc}^1(\overline{\Omega})$, $\overline{\Omega}={\Omega}{\cup}{\partial}{\Omega}$, $h(x){\geq}1$ for all $x{\in}{\Omega}$. The proof of main results rely essentially on the arguments of variational method.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF

ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION

  • Park, Sang-Don;Kang, Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$($\mid${\nabla}u$\mid$^{m-2}$\mid${\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;$\mid${\nabla}v$\mid$^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}$\mid${\nabla}u$\mid$^mdx$\mid$\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).

[ W12 ]-ESTIMATES ON THE PREY-PREDATOR SYSTEMS WITH CROSS-DIFFUSIONS AND FUNCTIONAL RESPONSES

  • Shim, Seong-A
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.211-227
    • /
    • 2008
  • As a mathematical model proposed to understand the behaviors of interacting species, cross-diffusion systems with functional responses of prey-predator type are considered. In order to obtain $W^{1_2}$-estimates of the solutions, we make use of several forms of calculus inequalities and embedding theorems. We consider the quasilinear parabolic systems with the cross-diffusion terms, and without the self-diffusion terms because of the simplicity of computations. As the main result we derive the uniform $W^{1_2}$-bound of the solutions and obtain the global existence in time.

An Efficient and Accurate Method for Calculating Nonlinear Diffraction Beam Fields

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

FUZZY CONTROL AS INTERPOLATION

  • Kovalerchuk, B.;Yusupov, H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1151-1154
    • /
    • 1993
  • The purpose of the paper is to explain some heuristic, common sense suppositions of fuzzy control. It is shown that Fuzzy Control is a kind of quasilinear interpolation of prototypes. Control function can be sufficiently exact represented as piecewise-linear function. The best interpolation is connected with normalized intersected fuzzy sets.

  • PDF