DOI QR코드

DOI QR Code

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed (University of Tunis El Manar Higher Institute of Medical Technologies of Tunis)
  • Received : 2019.09.23
  • Accepted : 2020.06.26
  • Published : 2020.11.01

Abstract

We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

Keywords

References

  1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  2. G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $R^N$, J. Differential Equations 255 (2013), no. 8, 2340-2362. https://doi.org/10.1016/j.jde.2013.06.016
  3. T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149
  4. G. M. Bisci and V. D. Radulescu, Ground state solutions of scalar field fractional Schrodinger equations, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2985-3008. https://doi.org/10.1007/s00526-015-0891-5
  5. C. Brandle, E. Colorado, A. de Pablo, and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39-71. https://doi.org/10.1017/S0308210511000175
  6. H. Brezis, Analyse fonctionnelle, Collection Mathematiques Appliquees pour la Maitrise., Masson, Paris, 1983.
  7. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. https://doi.org/10.1080/03605300600987306
  8. X. Chang, Ground state solutions of asymptotically linear fractional Schrodinger equations, J. Math. Phys. 54 (2013), no. 6, 061504, 10 pp. https://doi.org/10.1063/1.4809933
  9. X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027
  10. M. Cheng, Bound state for the fractional Schrodinger equation with unbounded potential, J. Math. Phys. 53 (2012), no. 4, 043507, 7 pp. https://doi.org/10.1063/1.3701574
  11. S. Dipierro, G. Palatucci, and E. Valdinoci, Existence and symmetry results for a Schrodinger type problem involving the fractional Laplacian, Matematiche (Catania) 68 (2013), no. 1, 201-216. https://doi.org/10.4418/2013.68.1.15
  12. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  13. M. M. Fall, F. Mahmoudi, and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrodinger equation, Nonlinearity 28 (2015), no. 6, 1937-1961. https://doi.org/10.1088/0951-7715/28/6/1937
  14. P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. https://doi.org/10.1017/S0308210511000746
  15. H. Jin and W. Liu, Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth, Electron. J. Differential Equations 2017 (2017), Paper No. 80, 19 pp.
  16. J. Korvenpaa, T. Kuusi, and G. Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations, Math. Ann. 369 (2017), no. 3-4, 1443-1489. https://doi.org/10.1007/s00208-016-1495-x
  17. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  18. N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
  19. N. Laskin, Fractional quantum mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. https://doi.org/10.1142/10541
  20. S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in $R^N$, J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990
  21. S. Secchi, Perturbation results for some nonlinear equations involving fractional operators, Differ. Equ. Appl. 5 (2013), no. 2, 221-236. https://doi.org/10.7153/dea-05-14
  22. S. Secchi, On fractional Schrodinger equations in $R^N$ without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 19-41.
  23. R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137. https://doi.org/10.3934/dcds.2013.33.2105
  24. J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), no. 1-2, 21-41. https://doi.org/10.1007/s00526-010-0378-3
  25. J. Tan, Y. Wang, and J. Yang, Nonlinear fractional field equations, Nonlinear Anal. 75 (2012), no. 4, 2098-2110. https://doi.org/10.1016/j.na.2011.10.010
  26. K. Teng, Multiple solutions for a class of fractional Schrodinger equations in RN, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008
  27. W. Zhang, X. Tang, and J. Zhang, Infinitely many radial and non-radial solutions for a fractional Schrodinger equation, Comput. Math. Appl. 71 (2016), no. 3, 737-747. https://doi.org/10.1016/j.camwa.2015.12.036
  28. H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in RN, J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660