• 제목/요약/키워드: quadratic curve

검색결과 177건 처리시간 0.024초

HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION

  • Ahn, Young-Joon
    • 대한수학회논문집
    • /
    • 제22권4호
    • /
    • pp.641-648
    • /
    • 2007
  • In this paper, we present the exact Hausdorff distance between the offset curve of quadratic $B\'{e}zier$ curve and its quadratic $GC^1$ approximation. To illustrate the formula for the Hausdorff distance, we give an example of the quadratic $GC^1$ approximation of the offset curve of a quadratic $B\'{e}zier$ curve.

Construction of Logarithmic Spiral-like Curve Using G2 Quadratic Spline with Self Similarity

  • Lee, Ryeong;Ahn, Young Joon
    • 통합자연과학논문집
    • /
    • 제7권2호
    • /
    • pp.124-129
    • /
    • 2014
  • In this paper, we construct an logarithmic spiral-like curve using curvature-continuous quadratic spline and quadratic rational spline. The quadratic (rational) spline has self-similarity. We present some properties of the quadratic spline. Also using this $G^2$ quadratic spline, an approximation of logarithmic spiral is proposed and error analysis is obtained.

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE

  • Kim, Yeon-Soo;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.257-265
    • /
    • 2009
  • In this paper we find an explicit form of upper bound of Hausdorff distance between given cubic spline curve and its quadratic spline approximation. As an application the approximation of offset curve of cubic spline curve is presented using our explicit error analysis. The offset curve of quadratic spline curve is exact rational spline curve of degree six, which is also an approximation of the offset curve of cubic spline curve.

  • PDF

Isoparametric Curve of Quadratic F-Bézier Curve

  • Park, Hae Yeon;Ahn, Young Joon
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.46-52
    • /
    • 2013
  • In this thesis, we consider isoparametric curves of quadratic F-B$\acute{e}$zier curves. F-B$\acute{e}$zier curves unify C-B$\acute{e}$zier curves whose basis is {sint, cos t, t, 1} and H-B$\acute{e}$zier curves whose basis is {sinht, cosh t, t,1}. Thus F-B$\acute{e}$zier curves are more useful in Geometric Modeling or CAGD(Computer Aided Geometric Design). We derive the relation between the quadratic F-B$\acute{e}$zier curves and the quadratic rational B$\acute{e}$zier curves. We also obtain the geometric properties of isoparametric curve of the quadratic F-B$\acute{e}$zier curves at both end points and prove the continuity of the isoparametric curve.

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.

평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기 (Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane)

  • 김재훈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권1호
    • /
    • pp.21-25
    • /
    • 2009
  • 본 논문에서 우리는 평면상에 점들이 주어지는 경우에, 조각적 이차 다항식 곡선으로 맞추는 문제를 다룬다. 곡선은 이차 다항식 선분들로 이루어지고, 하나의 선분은 두 점 사이를 연결한다. 하지만 이 곡선은 점들의 부분집합만을 지나고, 지나지 못하는 점들에 대해서는 $L^{\infty}$거리로 에러를 측정한다. 이 문제에 대해서 우리는 두 가지 최적화 문제를 생각한다. 첫째로 허용 가능한 에러의 범위가 주어지고, 곡선 선분의 개수를 줄이는 문제이고, 둘째로 선분의 개수가 주어지고, 에러를 줄이는 문제이다. 주어진 점들의 개수 n에 대해서, 우리는 첫번째 문제에 대한 $O(n^2)$ 알고리즘과 두번째 문제에 대한 $O(n^3)$ 알고리즘을 제안한다.

ISOGONAL AND ISOTOMIC CONJUGATES OF QUADRATIC RATIONAL Bézier CURVES

  • Yun, Chan Ran;Ahn, Young Joon
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2015
  • In this paper we characterize the isogonal and isotomic conjugates of conic. Every conic can be expressed by a quadratic rational B$\acute{e}$zier curve having control polygon $b_0b_1b_2$ with weight w > 0. We show that the isotomic conjugate of parabola and hyperbola with respect to ${\Delta}b_0b_1b_2$ is ellipse, and that the isotomic conjugate of ellipse with the weight $w={\frac{1}{2}}$ is identical. We also find all cases of the isogonal conjugate of conic with respect to ${\Delta}b_0b_1b_2$. Our characterizations are derived easily due to the expression of conic by the quadratic rational B$\acute{e}$ezier curve in standard form.

ERROR ANALYSIS FOR APPROXIMATION OF HELIX BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

  • Ahn, Young-Joon;Kim, Philsu
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.861-873
    • /
    • 2005
  • In this paper we approximate a cylindrical helix by bi-conic and bi-quadratic Bezier curves. Each approximation method is $G^1$ end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. As an illustration we give some numerical examples.

ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL B$\acute{e}$zier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES

  • Kim, Seon-Hong;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권2호
    • /
    • pp.123-135
    • /
    • 2011
  • In this paper, we present arc-length estimations for quadratic rational B$\acute{e}$zier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve exactly when the weight ${\omega}$ is 0, 1 and ${\infty}$. We show that for all ${\omega}$ > 0 our estimations are strictly increasing with respect to ${\omega}$. Moreover, we find the parameter ${\mu}^*$ which makes our estimation coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve when it is a circular arc too. We also show that ${\mu}^*$ has a special limit, which is used for optimal estimation. We present some numerical examples, and the numerical results illustrates that the estimation with the limit value of ${\mu}^*$ is an optimal estimation.