References
- Y. J. Ahn, Conic approximation of planar curves, Computer-Aided Design 33 (2001), no. 12, 867-872 https://doi.org/10.1016/S0010-4485(00)00110-X
- Y. J. Ahn, Helix approximation with conic and qadratic Bezier curves, Comput. Aided Geom. Design, to appear, 2005
- Y. J. Ahn and H. O. Kim, Approximation of circular arcs by Bezier curves, J. Comput. Appl. Math. 81 (1997), 145-163 https://doi.org/10.1016/S0377-0427(97)00037-X
- Y. J. Ahn and H. O. Kim, Curvatures of the quadratic rational Bezier curves, Comput. Math. Appl. 36 (1998), no. 9, 71-83
- Y. J. Ahn, Y. S. Kim, and Y. S. Shin, Approximation of circular arcs and offset curves by Bezier curves of high degree, J. Comput. Appl. Math. 167 (2004), no. 2,405-416 https://doi.org/10.1016/j.cam.2003.10.008
- C. de Boor, K. Hollig, and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1987), 169-178
- W. L. F. Degen, High accurate rational approximation of parametric curves, Comput. Aided Geom. Design 10 (1993), 293-313 https://doi.org/10.1016/0167-8396(93)90043-3
- T. Dokken, M. Deehlen, T. Lyche, and K. Morken, Good approximation of circles by curvature-continuous Bezier curves, Comput. Aided Geom. Design 7 (1990), 33-41 https://doi.org/10.1016/0167-8396(90)90019-N
- G. Farin, Curvature continuity and offsets for piecewise conics, ACM Trans. Graph. 8 (1989), no. 2, 89-99 https://doi.org/10.1145/62054.62056
- G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA, 1998
- M. Floater, High order approximation of conic sections by quadratic splines, Comput. Aided Geom. Design 12 (1995), 617-637 https://doi.org/10.1016/0167-8396(94)00037-S
-
M. Floater, An O(
$h^{2n}$ ) Hermite approximation for conic sections, Comput. Aided Geom. Design 14 (1997), 135-151 https://doi.org/10.1016/S0167-8396(96)00025-8 - M. Goldapp, Approximation of circular arcs by cubic polynomials, Comput. Aided Geom. Design 8 (1991), 227-238 https://doi.org/10.1016/0167-8396(91)90007-X
- I. Juhasz, Approximating the helix with rational cubic Bezier curves, ComputerAided Design 27 (1995), 587-593 https://doi.org/10.1016/0010-4485(95)99795-A
- E. T. Lee, The rational Bezier representation for conics, in geometric modeling: Algorithms and new trends, pp. 3-19, Philadelphia, 1987. SIAM, Academic Press
- S. Mick and O. Roschel, Interpolation of helical patches by kinematics rational Bezier patches, Computers and Graphics 14 (1990), no. 2, 275-280 https://doi.org/10.1016/0097-8493(90)90038-Y
- K. Morken, Best approximation of circle segments by quadratic Bezier curves, in P.J. Laurent, A. Le Mehaute, and L.L. Schumaker, editors, Curves and Surfaces, New York, 1990. Academic Press
- T. Pavlidis, Curve fitting with conic splines, ACM Trans. Graph. 2 (1983), 1-31 https://doi.org/10.1145/357314.357315
- L. Piegl, The sphere as a rational Bezier surfaces, Comput. Aided Geom. Design 3 (1986), 45-52 https://doi.org/10.1016/0167-8396(86)90023-3
- L. Piegl and W. Tiller, Curve and surface constructions using rational B-splines, Computer-Aided Design 19 (1987), no. 9, 485-498 https://doi.org/10.1016/0010-4485(87)90234-X
- T. Pratt, Techniques for conic splines, in Proceedings of SIGGRAPH 85, pp. 151-159. ACM, 1985
- R. Schaback, Planar curve interpolation by piecewise conics of arbitrary type, Constr. Approx. 9 (1993), 373-389 https://doi.org/10.1007/BF01204647
- G. Seemann, Approximating a helix segment with a rational Bezier curve, Comput. Aided Geom. Design 14 (1997), 475-490 https://doi.org/10.1016/S0167-8396(96)00040-4
- P. R. Wilson, Conic representations for sphere description, IEEE Computer Graph. Appl. 7 (1987), no. 4, 1-31 https://doi.org/10.1109/MCG.1987.277095
- X. Yang, High accuracy approximation of helices by quintic curves, Comput. Aided Geom. Design 20 (2003), 303-317 https://doi.org/10.1016/S0167-8396(03)00074-8