DOI QR코드

DOI QR Code

HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION

  • Published : 2007.10.31

Abstract

In this paper, we present the exact Hausdorff distance between the offset curve of quadratic $B\'{e}zier$ curve and its quadratic $GC^1$ approximation. To illustrate the formula for the Hausdorff distance, we give an example of the quadratic $GC^1$ approximation of the offset curve of a quadratic $B\'{e}zier$ curve.

Keywords

References

  1. Y. J. Ahn, Conic Approximation of planar curves, Comp. Aided Desi. 33 (2001), no. 12, 867-872 https://doi.org/10.1016/S0010-4485(00)00110-X
  2. Y. J. Ahn, Helix approximation with conic and qadratic Bezier curves, Comp. Aided Geom. Desi. 22 (2005), no. 6, 551-565 https://doi.org/10.1016/j.cagd.2005.02.003
  3. Y. J. Ahn and H. O. Kim, Approximation of circular arcs by Bezier curves, J. Comp. Appl. Math. 81 (1997), 145-163 https://doi.org/10.1016/S0377-0427(97)00037-X
  4. Y. J. Ahn and H. O. Kim, Curvatures of the quadratic rational Bezier curves, Comp. Math. Appl. 36 (1998), no. 9, 71-83 https://doi.org/10.1016/S0898-1221(98)00193-X
  5. Y. J. Ahn, H. O. Kim, and K. Y. Lee, $G^1$ arc spline approximation of quadratic Bezier curves, Comp. Aided Desi. 30 (1998), no. 8, 615-620 https://doi.org/10.1016/S0010-4485(98)00016-5
  6. Y. J. Ahn, Y. S. Kim, and Y. S. Shin, Approximation of circular arcs and offset curves by Bezier curves of high degree, J. Camp. Appl. Math. 167 (2004), 181-191 https://doi.org/10.1016/j.cam.2003.10.008
  7. G. Elber, I. K. Lee, and M. S. Kim, Comparing offset curve approximation method, IEEE Camp. Grap. Appl. 17 (1997), no. 3, 62-71 https://doi.org/10.1109/38.586019
  8. G. Farin, Curvature continuity and offsets for piecewise conics, ACM Than. Grap. (1989), 89-99
  9. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA, 1993
  10. R. T. Farouki, Conic Approximation of Conic Offsets, J. Symb. Comp. 23 (1997), 301-313 https://doi.org/10.1006/jsco.1996.0090
  11. R. T. Farouki and J. K. Johnstone, The bisector of a point and a plane parametric curve, Comp. Aided Geom. Desi. 11 (1994), no. 2, 117-151 https://doi.org/10.1016/0167-8396(94)90029-9
  12. R. T. Farouki and C. A. Neff, Analytic properties of plane offset curves, Comp. Aided Geom. Desi. 7 (1990), 83-99 https://doi.org/10.1016/0167-8396(90)90023-K
  13. R. T. Farouki and T. W. Sederberg, Analysis of the offset to a parabola, Comp. Aided Geom. Desi. 8 (1995), 639-645 https://doi.org/10.1016/0167-8396(94)00038-T
  14. S. H. Kim and Y. J. Ahn, Approximation of circular arcs by quartic Bezier curves, Comp. Aided Desi. 39 (2007), no. 6, 490-493 https://doi.org/10.1016/j.cad.2007.01.004
  15. I. K. Lee, M. S. Kim, and G. Elber, Planar curve offset based on circle approximation, Comp. Aided Desi. 28 (1996), 617-630 https://doi.org/10.1016/0010-4485(95)00078-X