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ABSTRACT. In this paper we find an explicit form of upper bound of Hausdorff distance be-
tween given cubic spline curve and its quadratic spline approximation. As an application the
approximation of offset curve of cubic spline curve is presented using our explicit error analy-
sis. The offset curve of quadratic spline curve is exact rational spline curve of degree six, which
is also an approximation of the offset curve of cubic spline curve.

1. INTRODUCTION

Cubic and quadratic spline curves and their offset curves are most widely used in CAD/CAM
or CAGD [6, 10, 13]. While offset curve of cubic spline cannot be expressed by polynomial or
rational spline curve amenable to CAD/CAM system[12, 18, 24, 25], offset curve of quadratic
spline can be exactly expressed by rational spline curve of degree six[9, 14, 21, 23]. This is one
of the important reason why the quadratic approximation of cubic spline curves is needed[15,
20, 21].

The quadratic approximation of cubic spline is easy, but the calculation of the distance be-
tween cubic curve and its quadratic approximation curve is not[1, 4]. As the error measurement
method, the Hausdorff distance between two curves is generally used in CAD/CAM or CAGD.
The definition of Hausdorff distance between two curves p(s), s € [a, b] and q(t), t € [c, d], is

d — i —q(t i —q(t)|V.
7(p,q) max{srg[gflg]tgm}lp(S) q()ngﬁggﬁ“D(S) q(t)[}

(For more knowledge about the Hausdorff distance, refer to [5, 7, 8, 16, 17, 19].) But, it is
not easy to find the Hausdorff distance between cubic Bézier curve and its quadratic Bézier

Received by the editors September 26 2009; Accepted November 26 2009.

2000 Mathematics Subject Classification. 65D17, 41A15.

Key words and phrases. quadratic Bézier curve, Hausdorff distance, offset curve, spline, geometric continuity.
T Corresponding author.

This study was supported by research funds from Chosun University, 2008.

257



258 Y. S. KIM AND Y. J. AHN

FIGURE 1. Hausdorff distance between two curves p(s), s € [a,b], (thick
lines) and q(t), t € [c, d] (thin lines).

approximation. The Hausdorff distance between two differentiable curves p(s) and q(t) can
be obtained by searching the points p(so) and q(tp) satisfying

P'(s0) o (P(s0) —a(to)) =0 and q'(to) o (P(s0) — a(to)) =0 (1.1)

when one of them is admissible to the other[11], as shown in Figure 1. Thus to find the
Hausdorff distance requires solving the nonlinear system of two variables such as in Equation
(1.1). Although p is cubic q is quadratic, Equation (1.1) cannot be solved symbolically.

In this paper we present an explicit upper bound of Hausdorff distance between cubic Bézier
curve and its quadratic approximation curve. As an application, we give an approximation of
offset curve of cubic Bézier curves. We approximate the outline of the font ’S’ consisting of
cubic Bézier curves by quadratic spline curve, and we find the offset curve of the quadratic
spline. The offset curve is an rational spline of degree six and also an approximation of offset
curve of the cubic spline.

In §2, we present the upper bound of Hausdorff distance of the between cubic Bézier curve
and the quadratic approximation. In §3, we applied our analysis to an numerical example, the
quadratic approximation of cubic spline and calculation of the exact offset curve of quadratic
spline in rational spline of degree six.

2. ERROR BOUND ANALYSIS FOR QUADRATIC APPROXIMATION OF CUBIC CURVE

In this section we present an error bound analysis for quadratic G' end-points interpolation
of cubic Bézier curve. Let q(t) be the quadratic Bézier curve with the control points qg, q1
and qs. By definition of Bézier curve[13],

2
at) =Y aBXt)  telo,1]
1=0
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FIGURE 2. (a) Quadratic Bézier curve q(¢) and planar curve p(s), s € [a, b].
(b) dr(p(s),q) and dr(x, q).

where B} (t) is the Bernstein polynomial of degree n,

BIMt) = ( )ti(l — )"t

Any point x in the (closed) triangle qgqiqo can be written uniquely in terms of barycentric
coordinates 7q, 71, 7o With respect to Aqoq1q2, where 7o+ 71+ 70 = 1land 0 < 79, 71,720 < 1,

n
?

X = T0qo + T1d1 + T292.
Thus any function defined on AAqpqiq2 can be expressed as a function of 7q, 71, 72. Using the
function f : Aqpqiq2 — R defined[13] by

f(x) = 49 — 71 Q2.1)

Floater[17] presented a formula for an upper bound of the Hausdorff distance between the
planar curve contained in Aqpqiqs and the conic approximation having control points q;,
1 =0, 1, 2, using Equation (2.1). By the restriction w = 1 on the conic, we have the following
inequality.

Lemma 2.1. For any continuous curve p(s), s € [a, b], contained in Nqoqi1qe, the Hausdorff
distance between p(s) and the quadratic Bézier curve q(t) is

1
di(p,q) < 1 max |f(p(s))]ldo — 2a1 + q2. (2.2)

Proof. See Lemma 3.2 in Floater [17]. O
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In this paper we denote the upper bound in equation above by dr(p, q).

Remark 2.2. For any point x in the triangle Aqoq1q2, dp(x,q) = 1| f(x)||do + 92 — 2qu]
is the distance from the point x to the curve q(t) in direction of qo + q2 — 2q1, as shown in
Figure 2, and

dr(p,q) = max dp(p(s), q).
s€a,b]

We find the exact form of the distance dr(c, q) between planar cubic Bézier curve ¢ and
its quadratic G* end-points interpolation q. Let c(s) be the planar cubic Bézier curve with the
control points ¢;, ¢ = 0,--- , 3,

3
c(s) = _ciB}(s)
=0

Let q(t) be the G! end points interpolation of c(s), and c(s) be contained in the triangle
Aqoq192, as shown in Figure 3. If such a quadratic Bézier curve q(¢) does not exist or the
cubic Bézier curve c(s) cannot be contained in Agoqiqe, then c(s) may be subdivided at
inflection points or farthest points from the line qgqsz. (Refer to [1]) Thus the cubic Bézier
curve c(s) may be expressed as
c(s) = qoBg(s)+ (1 —do)ao + doai) Bi(s) + (1 — 61)as + d1q1) B3 (s)

+a2 B3 () 2.3)
for some 0 < dp, 01 < 1, as shown in Figure 3. Also we can represent the cubic Bézier curve
c(s) as follows

c(s) = (Bi(s)+ (1 —3)Bi(s))ao + (JBi(s) + d1B3(s))a
+(B3(s) + (1 = 61) B3 (s))qe-
From Equation (2.1), we have the equation of f(c(s)) as
Flels)) = A(Bi(s) + (1 - 60) BL()) (Bi(s) + (1 01) Bi(s)) — (0B (s) + 61 BY(5)) 2.4)

which is a polynomial of degree six. Fortunately, we have the explicit error bound of the Haus-
dorff distance between cubic Bézier curve and its quadratic approximation curve as follows.

N —

Proposition 2.3. Let q(t) be the quadratic G* end-points interpolation of cubic Bézier curve
c(s), and c(s) be contained in the triangle Aqoq1q2. Then the upper bound of the Hausdorff
distance between two curves c and q is given by

1
dr(c,q) = 7 omax, |f(c(oi))llao + a2 — 2ai]

where 0;, i = 1,2,3, are roots in (0, 1) of cubic equation
[3(80 + 61) — 4]%s® — [3(60 + 61) — 4][760 + 201 — 6]s> (2.5)
+[1562 4 96061 — 1880 + 201]s + [4(1 — 61) — 363] = 0.
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qo = Co qz2 =C3

FIGURE 3. Quadratic Bézier curve q(¢) (dotted line) with control points qo,
q1 and qq, and cubic Bézier curve c(s) (solid line) with control points c;,
i1=0,---,3.

Proof. Since f(c(0)) = 0 and f(c(1)) = 0, |f(c(s))| has the maximum value at stationary
points for some s € (0, 1). Therefore it is sufficient to find the roots of

afe) _,

ds
By Equation (2.4) and the equation BJ'(t) B (t) = ((Zl(%)) B;fjm(t) (refer to [2, 3]), we have
it
1-9 14+9(1—3d)(1 =9 1—9
fle(s)) = a2 Bg(s) + AL OEZ ) gy L%
- (?32(3) T 0 Bj(s) + ?34(5))
1 1
= 5(4(1 —81) — 362)BS(s) + E(ZO —18(8g + 61) + 276001) BS (s)
1
+ 5(4(1 —d0) — 301)Bi(s).
By differentiation rule of Bézier curves 4[>°"  b; B t)] =n S (biy1 — b)) B (1), we
obtain
df (c
il diS)) = B2(s)[3Go(d, 1) B3 (s) + G1(61,00) B} (s) (2.6)

—G1(51, 50)33(8) — 3G0((51, (51)35)(8)]
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FIGURE 4. Left : The cubic spline curve(blue) consists of 6 line segments
and 13 cubic Bézier curves ci(s), - -, ci3(s) with their control polygon(red)
in counter-clockwise order. Among them ca(s), cy(s), and c;;(s) have an
inflection point, and their control polygons are drawn by black. Right : The
quadratic spline approximation curve(blue) consists of 6 line segments and 16
quadratic Bézier curves with their control polygon(red).

where
Go(u,v) = 4(1 —v) — 3u?,  Gi(u,v) = =6+ 18(1 — u)(1 — v) — Juwv + Sv + 6u>.
The cubic Bézier function in Equation (2.6) can be expressed by poser series form
3[3(80 + 01) — 4]%s® — 3[3(00 + 01) — 4][700 + 26, — 6]s?
+3[1503 + 96001 — 1880 + 2615 + 3[4(1 — 1) — 353]

and its zeros in the open interval (0,1) are the critical points of f(c(s)), since B?(s) cannot
have zeros in (0, 1). O

The cubic equation (2.5) can be solved symbolically by Cardan’s solution [22].

3. APPLICATION

In this section we present application of quadratic spline approximation of cubic spline curve
to approximate the offset curves of cubic spline. In general the offset curve of planar curve
p(t) = (x(t),y(t)), t € [a,b], cannot easily expressed in polynomial or rational, since the
offset curve

(=y' (), 2'(t))
/(02 +y'(6)?

p4(t) = p(t) +d t € la,0]



EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE 263

FIGURE 5. The offset curve of the quadratic spline approximation curve(blue)
can be exactly expressed by the rational spline curve(green) of degree six
which consists of 6 line segments, 8 circular arcs and 16 rational Bézier curves
of degree six.

with offset-distance d has radical. But surprisingly the offset curve of any quadratic spline
curve can be exactly expressed by rational spline curve of degree six [14, 21]. Thus the rational
spline curve of degree six is an approximation of offset curve of cubic spline.

Let the outline of the font ’S’ be given by the cubic spline curve as shown in Figure 4. The
height of the font is 1. It consists of 13 cubic Bézier curves c¢;(s), (i = 1,---,13) and 6
line segments. Each cubic Bézier curve is approximated by quadratic Bézier curve q;(¢). But
the cubic Bézier curves having inflection point, ¢;(s), (i = 2,9, 11), cannot be approximated
by one quadratic Bézier curve, so after they are subdivided at the inflection points, quadratic
approximations are achieved, q;(t), (j = 2,3,10,11,13,14). Thus the quadratic spline ap-
proximation consists of 16 quadratic Bézier curves and 6 line segments, as shown in Figure
4. By Proposition 2.3, we obtain the upper bound of the Hausdorff distance between cubic
Bézier curve c;(s) and its quadratic approximation curve q;(t), as shown in Table 1. Finally,
we present the offset curve of the quadratic spline curve for offset distance d = 0.03 as shown
in Figure 5. It is the rational spline curve of degree six consisting 16 rational Bézier curve of
degree six, 6 line segments, and 8 circular arcs.

The maximum of approximation error is 4.15 x 1072, which occurs at c5(s). If the cubic
Bézier curve having the maximum error is subdivided, then the quadratic approximations of
two subdivided cubic Bézier curves can be proceed, and the maximum error must be reduced
with approximation order 4.
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cubic Bézier curve quadratic approximation upper bound of dy(c, q)

ci(s) q1(t) 6.30 x 1073
co(s) q2(t), qs(t) 5.67 x 1073, 6.50 x 1073
c3(s) qa(t) 2.52 x 1072
ca(s) qs(t) 3.09 x 1072
cs(s) qs(t) 4.15 x 1072
ce(s) ar(t) 2.14 x 1072
c7(s) qs(t) 2.60 x 1072
cs(s) qo(t) 5.98 x 1073
Cg(S) qlo(t), qll(s) 5.37 X 10_3, 5.60 x 1073
010(8) q12(t 3.59 x 102
c11(s) qi3(t), q14(s) 3.95 x 1072, 3.18 x 1072
C12(S) q15(t) 1.87 x 1072
C13(S) q16(t) 2.84 x 1072

TABLE 1. The upper bound dr(c, q) of the Hausdorff distance between cubic
Bézier curve c(s) and its quadratic Bézier curve q(t).
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