• 제목/요약/키워드: q-uniformly smooth

검색결과 13건 처리시간 0.022초

STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN q-UNIFORMLY SMOOTH BANACH SPACES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제20권2호
    • /
    • pp.225-237
    • /
    • 2012
  • In this paper, we introduce a new iterative scheme to investigate the problem of nding a common element of nonexpansive mappings and the set of solutions of generalized variational inequalities for a $k$-strict pseudo-contraction by relaxed extra-gradient methods. Strong convergence theorems are established in $q$-uniformly smooth Banach spaces.

STRONG CONVERGENCE OF STRICT PSEUDO-CONTRACTIONS IN Q-UNIFORMLY SMOOTH BANACH SPACES

  • Pei, Yonggang;Liu, Fujun;Gao, Qinghui
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.13-31
    • /
    • 2015
  • In this paper, we introduce a general iterative algorithm for finding a common element of the common fixed point set of an infinite family of ${\lambda}_i$-strict pseudo-contractions and the solution set of a general system of variational inclusions for two inverse strongly accretive operators in q-uniformly smooth Banach spaces. Then, we analyze the strong convergence of the iterative sequence generated by the proposed iterative algorithm under mild conditions.

ON THE EXISTENCE OF SOLUTIONS OF EXTENDED GENERALIZED VARIATIONAL INEQUALITIES IN BANACH SPACES

  • He, Xin-Feng;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.

Fixed point iterations for quasi-contractive maps in uniformly smooth banach spaces

  • Chidume, C.E.;Osilike, M.O.
    • 대한수학회보
    • /
    • 제30권2호
    • /
    • pp.201-212
    • /
    • 1993
  • It is our purpose in this paper to first establish an inequality in real uniformly smooth Banach spaces with modulus of smoothness of power type q > 1 that generalizes a well known Hilbert space inequality. Using our inequality, we shall then extend the above result of Qihou [15] on the Ishikawa iteration process from Hilbert spaces to these much more general Banach spaces. Furthermore, we shall prove that the Mann iteration process converges strongly to the unique fixed point of a quasi-contractive map in this general setting. No compactness assumption on K is required in our theorems.

  • PDF

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.385-397
    • /
    • 2003
  • In this paper, we introduce and study a system of nonlinear implicit variational inclusions (SNIVI) in real Banach spaces: determine elements $x^{*},\;y^{*},\;z^{*}\;\in\;E$ such that ${\theta}\;{\in}\;{\alpha}T(y^{*})\;+\;g(x^{*})\;-\;g(y^{*})\;+\;A(g(x^{*}))\;\;\;for\;{\alpha}\;>\;0,\;{\theta}\;{\in}\;{\beta}T(z^{*})\;+\;g(y^{*})\;-\;g(z^{*})\;+\;A(g(y^{*}))\;\;\;for\;{\beta}\;>\;0,\;{\theta}\;{\in}\;{\gamma}T(x^{*})\;+\;g(z^{*})\;-\;g(x^{*})\;+\;A(g(z^{*}))\;\;\;for\;{\gamma}\;>\;0,$ where T, g : $E\;{\rightarrow}\;E,\;{\theta}$ is zero element in Banach space E, and A : $E\;{\rightarrow}\;{2^E}$ be m-accretive mapping. By using resolvent operator technique for n-secretive mapping in real Banach spaces, we construct some new iterative algorithms for solving this system of nonlinear implicit variational inclusions. The convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces and in real Banach spaces, respectively.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.